Solve for x (complex solution)
x=\frac{-\sqrt{211}i-7}{10}\approx -0.7-1.452583905i
x=\frac{-7+\sqrt{211}i}{10}\approx -0.7+1.452583905i
Graph
Share
Copied to clipboard
-5x^{2}-7x=13
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-5x^{2}-7x-13=13-13
Subtract 13 from both sides of the equation.
-5x^{2}-7x-13=0
Subtracting 13 from itself leaves 0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-5\right)\left(-13\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, -7 for b, and -13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-5\right)\left(-13\right)}}{2\left(-5\right)}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49+20\left(-13\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-\left(-7\right)±\sqrt{49-260}}{2\left(-5\right)}
Multiply 20 times -13.
x=\frac{-\left(-7\right)±\sqrt{-211}}{2\left(-5\right)}
Add 49 to -260.
x=\frac{-\left(-7\right)±\sqrt{211}i}{2\left(-5\right)}
Take the square root of -211.
x=\frac{7±\sqrt{211}i}{2\left(-5\right)}
The opposite of -7 is 7.
x=\frac{7±\sqrt{211}i}{-10}
Multiply 2 times -5.
x=\frac{7+\sqrt{211}i}{-10}
Now solve the equation x=\frac{7±\sqrt{211}i}{-10} when ± is plus. Add 7 to i\sqrt{211}.
x=\frac{-\sqrt{211}i-7}{10}
Divide 7+i\sqrt{211} by -10.
x=\frac{-\sqrt{211}i+7}{-10}
Now solve the equation x=\frac{7±\sqrt{211}i}{-10} when ± is minus. Subtract i\sqrt{211} from 7.
x=\frac{-7+\sqrt{211}i}{10}
Divide 7-i\sqrt{211} by -10.
x=\frac{-\sqrt{211}i-7}{10} x=\frac{-7+\sqrt{211}i}{10}
The equation is now solved.
-5x^{2}-7x=13
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}-7x}{-5}=\frac{13}{-5}
Divide both sides by -5.
x^{2}+\left(-\frac{7}{-5}\right)x=\frac{13}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}+\frac{7}{5}x=\frac{13}{-5}
Divide -7 by -5.
x^{2}+\frac{7}{5}x=-\frac{13}{5}
Divide 13 by -5.
x^{2}+\frac{7}{5}x+\left(\frac{7}{10}\right)^{2}=-\frac{13}{5}+\left(\frac{7}{10}\right)^{2}
Divide \frac{7}{5}, the coefficient of the x term, by 2 to get \frac{7}{10}. Then add the square of \frac{7}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{5}x+\frac{49}{100}=-\frac{13}{5}+\frac{49}{100}
Square \frac{7}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{5}x+\frac{49}{100}=-\frac{211}{100}
Add -\frac{13}{5} to \frac{49}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{10}\right)^{2}=-\frac{211}{100}
Factor x^{2}+\frac{7}{5}x+\frac{49}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{10}\right)^{2}}=\sqrt{-\frac{211}{100}}
Take the square root of both sides of the equation.
x+\frac{7}{10}=\frac{\sqrt{211}i}{10} x+\frac{7}{10}=-\frac{\sqrt{211}i}{10}
Simplify.
x=\frac{-7+\sqrt{211}i}{10} x=\frac{-\sqrt{211}i-7}{10}
Subtract \frac{7}{10} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}