Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-5x^{2}=3+4
Add 4 to both sides.
-5x^{2}=7
Add 3 and 4 to get 7.
x^{2}=-\frac{7}{5}
Divide both sides by -5.
x=\frac{\sqrt{35}i}{5} x=-\frac{\sqrt{35}i}{5}
The equation is now solved.
-5x^{2}-4-3=0
Subtract 3 from both sides.
-5x^{2}-7=0
Subtract 3 from -4 to get -7.
x=\frac{0±\sqrt{0^{2}-4\left(-5\right)\left(-7\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 0 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-5\right)\left(-7\right)}}{2\left(-5\right)}
Square 0.
x=\frac{0±\sqrt{20\left(-7\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{0±\sqrt{-140}}{2\left(-5\right)}
Multiply 20 times -7.
x=\frac{0±2\sqrt{35}i}{2\left(-5\right)}
Take the square root of -140.
x=\frac{0±2\sqrt{35}i}{-10}
Multiply 2 times -5.
x=-\frac{\sqrt{35}i}{5}
Now solve the equation x=\frac{0±2\sqrt{35}i}{-10} when ± is plus.
x=\frac{\sqrt{35}i}{5}
Now solve the equation x=\frac{0±2\sqrt{35}i}{-10} when ± is minus.
x=-\frac{\sqrt{35}i}{5} x=\frac{\sqrt{35}i}{5}
The equation is now solved.