Solve for x (complex solution)
x=-36+6\sqrt{10}i\approx -36+18.973665961i
x=-6\sqrt{10}i-36\approx -36-18.973665961i
Graph
Share
Copied to clipboard
-5x^{2}-360x-1980=6300
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-5x^{2}-360x-1980-6300=6300-6300
Subtract 6300 from both sides of the equation.
-5x^{2}-360x-1980-6300=0
Subtracting 6300 from itself leaves 0.
-5x^{2}-360x-8280=0
Subtract 6300 from -1980.
x=\frac{-\left(-360\right)±\sqrt{\left(-360\right)^{2}-4\left(-5\right)\left(-8280\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, -360 for b, and -8280 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-360\right)±\sqrt{129600-4\left(-5\right)\left(-8280\right)}}{2\left(-5\right)}
Square -360.
x=\frac{-\left(-360\right)±\sqrt{129600+20\left(-8280\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-\left(-360\right)±\sqrt{129600-165600}}{2\left(-5\right)}
Multiply 20 times -8280.
x=\frac{-\left(-360\right)±\sqrt{-36000}}{2\left(-5\right)}
Add 129600 to -165600.
x=\frac{-\left(-360\right)±60\sqrt{10}i}{2\left(-5\right)}
Take the square root of -36000.
x=\frac{360±60\sqrt{10}i}{2\left(-5\right)}
The opposite of -360 is 360.
x=\frac{360±60\sqrt{10}i}{-10}
Multiply 2 times -5.
x=\frac{360+60\sqrt{10}i}{-10}
Now solve the equation x=\frac{360±60\sqrt{10}i}{-10} when ± is plus. Add 360 to 60i\sqrt{10}.
x=-6\sqrt{10}i-36
Divide 360+60i\sqrt{10} by -10.
x=\frac{-60\sqrt{10}i+360}{-10}
Now solve the equation x=\frac{360±60\sqrt{10}i}{-10} when ± is minus. Subtract 60i\sqrt{10} from 360.
x=-36+6\sqrt{10}i
Divide 360-60i\sqrt{10} by -10.
x=-6\sqrt{10}i-36 x=-36+6\sqrt{10}i
The equation is now solved.
-5x^{2}-360x-1980=6300
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-5x^{2}-360x-1980-\left(-1980\right)=6300-\left(-1980\right)
Add 1980 to both sides of the equation.
-5x^{2}-360x=6300-\left(-1980\right)
Subtracting -1980 from itself leaves 0.
-5x^{2}-360x=8280
Subtract -1980 from 6300.
\frac{-5x^{2}-360x}{-5}=\frac{8280}{-5}
Divide both sides by -5.
x^{2}+\left(-\frac{360}{-5}\right)x=\frac{8280}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}+72x=\frac{8280}{-5}
Divide -360 by -5.
x^{2}+72x=-1656
Divide 8280 by -5.
x^{2}+72x+36^{2}=-1656+36^{2}
Divide 72, the coefficient of the x term, by 2 to get 36. Then add the square of 36 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+72x+1296=-1656+1296
Square 36.
x^{2}+72x+1296=-360
Add -1656 to 1296.
\left(x+36\right)^{2}=-360
Factor x^{2}+72x+1296. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+36\right)^{2}}=\sqrt{-360}
Take the square root of both sides of the equation.
x+36=6\sqrt{10}i x+36=-6\sqrt{10}i
Simplify.
x=-36+6\sqrt{10}i x=-6\sqrt{10}i-36
Subtract 36 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}