Factor
-5\left(x-\left(70-4\sqrt{226}\right)\right)\left(x-\left(4\sqrt{226}+70\right)\right)
Evaluate
-5x^{2}+700x-6420
Graph
Share
Copied to clipboard
-5x^{2}+700x-6420=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-700±\sqrt{700^{2}-4\left(-5\right)\left(-6420\right)}}{2\left(-5\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-700±\sqrt{490000-4\left(-5\right)\left(-6420\right)}}{2\left(-5\right)}
Square 700.
x=\frac{-700±\sqrt{490000+20\left(-6420\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-700±\sqrt{490000-128400}}{2\left(-5\right)}
Multiply 20 times -6420.
x=\frac{-700±\sqrt{361600}}{2\left(-5\right)}
Add 490000 to -128400.
x=\frac{-700±40\sqrt{226}}{2\left(-5\right)}
Take the square root of 361600.
x=\frac{-700±40\sqrt{226}}{-10}
Multiply 2 times -5.
x=\frac{40\sqrt{226}-700}{-10}
Now solve the equation x=\frac{-700±40\sqrt{226}}{-10} when ± is plus. Add -700 to 40\sqrt{226}.
x=70-4\sqrt{226}
Divide -700+40\sqrt{226} by -10.
x=\frac{-40\sqrt{226}-700}{-10}
Now solve the equation x=\frac{-700±40\sqrt{226}}{-10} when ± is minus. Subtract 40\sqrt{226} from -700.
x=4\sqrt{226}+70
Divide -700-40\sqrt{226} by -10.
-5x^{2}+700x-6420=-5\left(x-\left(70-4\sqrt{226}\right)\right)\left(x-\left(4\sqrt{226}+70\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 70-4\sqrt{226} for x_{1} and 70+4\sqrt{226} for x_{2}.
x ^ 2 -140x +1284 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 140 rs = 1284
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 70 - u s = 70 + u
Two numbers r and s sum up to 140 exactly when the average of the two numbers is \frac{1}{2}*140 = 70. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(70 - u) (70 + u) = 1284
To solve for unknown quantity u, substitute these in the product equation rs = 1284
4900 - u^2 = 1284
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 1284-4900 = -3616
Simplify the expression by subtracting 4900 on both sides
u^2 = 3616 u = \pm\sqrt{3616} = \pm \sqrt{3616}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =70 - \sqrt{3616} = 9.867 s = 70 + \sqrt{3616} = 130.133
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}