Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-5x^{2}+3x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\left(-5\right)\left(-3\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 3 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-5\right)\left(-3\right)}}{2\left(-5\right)}
Square 3.
x=\frac{-3±\sqrt{9+20\left(-3\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-3±\sqrt{9-60}}{2\left(-5\right)}
Multiply 20 times -3.
x=\frac{-3±\sqrt{-51}}{2\left(-5\right)}
Add 9 to -60.
x=\frac{-3±\sqrt{51}i}{2\left(-5\right)}
Take the square root of -51.
x=\frac{-3±\sqrt{51}i}{-10}
Multiply 2 times -5.
x=\frac{-3+\sqrt{51}i}{-10}
Now solve the equation x=\frac{-3±\sqrt{51}i}{-10} when ± is plus. Add -3 to i\sqrt{51}.
x=\frac{-\sqrt{51}i+3}{10}
Divide -3+i\sqrt{51} by -10.
x=\frac{-\sqrt{51}i-3}{-10}
Now solve the equation x=\frac{-3±\sqrt{51}i}{-10} when ± is minus. Subtract i\sqrt{51} from -3.
x=\frac{3+\sqrt{51}i}{10}
Divide -3-i\sqrt{51} by -10.
x=\frac{-\sqrt{51}i+3}{10} x=\frac{3+\sqrt{51}i}{10}
The equation is now solved.
-5x^{2}+3x-3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-5x^{2}+3x-3-\left(-3\right)=-\left(-3\right)
Add 3 to both sides of the equation.
-5x^{2}+3x=-\left(-3\right)
Subtracting -3 from itself leaves 0.
-5x^{2}+3x=3
Subtract -3 from 0.
\frac{-5x^{2}+3x}{-5}=\frac{3}{-5}
Divide both sides by -5.
x^{2}+\frac{3}{-5}x=\frac{3}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-\frac{3}{5}x=\frac{3}{-5}
Divide 3 by -5.
x^{2}-\frac{3}{5}x=-\frac{3}{5}
Divide 3 by -5.
x^{2}-\frac{3}{5}x+\left(-\frac{3}{10}\right)^{2}=-\frac{3}{5}+\left(-\frac{3}{10}\right)^{2}
Divide -\frac{3}{5}, the coefficient of the x term, by 2 to get -\frac{3}{10}. Then add the square of -\frac{3}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{5}x+\frac{9}{100}=-\frac{3}{5}+\frac{9}{100}
Square -\frac{3}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{5}x+\frac{9}{100}=-\frac{51}{100}
Add -\frac{3}{5} to \frac{9}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{10}\right)^{2}=-\frac{51}{100}
Factor x^{2}-\frac{3}{5}x+\frac{9}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{10}\right)^{2}}=\sqrt{-\frac{51}{100}}
Take the square root of both sides of the equation.
x-\frac{3}{10}=\frac{\sqrt{51}i}{10} x-\frac{3}{10}=-\frac{\sqrt{51}i}{10}
Simplify.
x=\frac{3+\sqrt{51}i}{10} x=\frac{-\sqrt{51}i+3}{10}
Add \frac{3}{10} to both sides of the equation.
x ^ 2 -\frac{3}{5}x +\frac{3}{5} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{3}{5} rs = \frac{3}{5}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{3}{10} - u s = \frac{3}{10} + u
Two numbers r and s sum up to \frac{3}{5} exactly when the average of the two numbers is \frac{1}{2}*\frac{3}{5} = \frac{3}{10}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{3}{10} - u) (\frac{3}{10} + u) = \frac{3}{5}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{3}{5}
\frac{9}{100} - u^2 = \frac{3}{5}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{3}{5}-\frac{9}{100} = \frac{51}{100}
Simplify the expression by subtracting \frac{9}{100} on both sides
u^2 = -\frac{51}{100} u = \pm\sqrt{-\frac{51}{100}} = \pm \frac{\sqrt{51}}{10}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{3}{10} - \frac{\sqrt{51}}{10}i = 0.300 - 0.714i s = \frac{3}{10} + \frac{\sqrt{51}}{10}i = 0.300 + 0.714i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.