Solve for x
x=-\frac{2^{c}}{14}-\frac{10}{7}
Solve for c (complex solution)
c=\log_{2}\left(-14x-20\right)+\frac{2\pi n_{1}i}{\ln(2)}
n_{1}\in \mathrm{Z}
x\neq -\frac{10}{7}
Solve for c
c=\log_{2}\left(-14x-20\right)
x<-\frac{10}{7}
Graph
Share
Copied to clipboard
-8x-2^{c}-\left(4x-1\right)-2x=21
Combine -5x and -3x to get -8x.
-8x-2^{c}-4x+1-2x=21
To find the opposite of 4x-1, find the opposite of each term.
-12x-2^{c}+1-2x=21
Combine -8x and -4x to get -12x.
-14x-2^{c}+1=21
Combine -12x and -2x to get -14x.
-14x+1=21+2^{c}
Add 2^{c} to both sides.
-14x=21+2^{c}-1
Subtract 1 from both sides.
-14x=20+2^{c}
Subtract 1 from 21 to get 20.
-14x=2^{c}+20
The equation is in standard form.
\frac{-14x}{-14}=\frac{2^{c}+20}{-14}
Divide both sides by -14.
x=\frac{2^{c}+20}{-14}
Dividing by -14 undoes the multiplication by -14.
x=-\frac{2^{c}}{14}-\frac{10}{7}
Divide 20+2^{c} by -14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}