Solve for x
x\leq \frac{10}{27}
Graph
Share
Copied to clipboard
-5x+\frac{2}{3}+\frac{1}{2}x\geq -1
Add \frac{1}{2}x to both sides.
-\frac{9}{2}x+\frac{2}{3}\geq -1
Combine -5x and \frac{1}{2}x to get -\frac{9}{2}x.
-\frac{9}{2}x\geq -1-\frac{2}{3}
Subtract \frac{2}{3} from both sides.
-\frac{9}{2}x\geq -\frac{3}{3}-\frac{2}{3}
Convert -1 to fraction -\frac{3}{3}.
-\frac{9}{2}x\geq \frac{-3-2}{3}
Since -\frac{3}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{9}{2}x\geq -\frac{5}{3}
Subtract 2 from -3 to get -5.
x\leq -\frac{5}{3}\left(-\frac{2}{9}\right)
Multiply both sides by -\frac{2}{9}, the reciprocal of -\frac{9}{2}. Since -\frac{9}{2} is negative, the inequality direction is changed.
x\leq \frac{-5\left(-2\right)}{3\times 9}
Multiply -\frac{5}{3} times -\frac{2}{9} by multiplying numerator times numerator and denominator times denominator.
x\leq \frac{10}{27}
Do the multiplications in the fraction \frac{-5\left(-2\right)}{3\times 9}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}