Solve for n
n\geq 1
Share
Copied to clipboard
-5n+6\geq -35n+42-6n
Use the distributive property to multiply -7 by 5n-6.
-5n+6\geq -41n+42
Combine -35n and -6n to get -41n.
-5n+6+41n\geq 42
Add 41n to both sides.
36n+6\geq 42
Combine -5n and 41n to get 36n.
36n\geq 42-6
Subtract 6 from both sides.
36n\geq 36
Subtract 6 from 42 to get 36.
n\geq \frac{36}{36}
Divide both sides by 36. Since 36 is positive, the inequality direction remains the same.
n\geq 1
Divide 36 by 36 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}