Solve for m
m=-\frac{2\sqrt{10}i}{5}\approx -0-1.264911064i
m=\frac{2\sqrt{10}i}{5}\approx 1.264911064i
Share
Copied to clipboard
-5m^{2}=8
Multiply m and m to get m^{2}.
m^{2}=-\frac{8}{5}
Divide both sides by -5.
m=\frac{2\sqrt{10}i}{5} m=-\frac{2\sqrt{10}i}{5}
The equation is now solved.
-5m^{2}=8
Multiply m and m to get m^{2}.
-5m^{2}-8=0
Subtract 8 from both sides.
m=\frac{0±\sqrt{0^{2}-4\left(-5\right)\left(-8\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 0 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{0±\sqrt{-4\left(-5\right)\left(-8\right)}}{2\left(-5\right)}
Square 0.
m=\frac{0±\sqrt{20\left(-8\right)}}{2\left(-5\right)}
Multiply -4 times -5.
m=\frac{0±\sqrt{-160}}{2\left(-5\right)}
Multiply 20 times -8.
m=\frac{0±4\sqrt{10}i}{2\left(-5\right)}
Take the square root of -160.
m=\frac{0±4\sqrt{10}i}{-10}
Multiply 2 times -5.
m=-\frac{2\sqrt{10}i}{5}
Now solve the equation m=\frac{0±4\sqrt{10}i}{-10} when ± is plus.
m=\frac{2\sqrt{10}i}{5}
Now solve the equation m=\frac{0±4\sqrt{10}i}{-10} when ± is minus.
m=-\frac{2\sqrt{10}i}{5} m=\frac{2\sqrt{10}i}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}