Solve for a
a = \frac{7}{6} = 1\frac{1}{6} = 1.1666666666666667
Solve for b
b = -\frac{7}{6} = -1\frac{1}{6} = -1.1666666666666667
Share
Copied to clipboard
-14a+12b+14=-2a
Combine -5a and -9a to get -14a.
-14a+12b+14+2a=0
Add 2a to both sides.
-12a+12b+14=0
Combine -14a and 2a to get -12a.
-12a+14=-12b
Subtract 12b from both sides. Anything subtracted from zero gives its negation.
-12a=-12b-14
Subtract 14 from both sides.
\frac{-12a}{-12}=\frac{-12b-14}{-12}
Divide both sides by -12.
a=\frac{-12b-14}{-12}
Dividing by -12 undoes the multiplication by -12.
a=b+\frac{7}{6}
Divide -12b-14 by -12.
-14a+12b+14=-2a
Combine -5a and -9a to get -14a.
12b+14=-2a+14a
Add 14a to both sides.
12b+14=12a
Combine -2a and 14a to get 12a.
12b=12a-14
Subtract 14 from both sides.
\frac{12b}{12}=\frac{12a-14}{12}
Divide both sides by 12.
b=\frac{12a-14}{12}
Dividing by 12 undoes the multiplication by 12.
b=a-\frac{7}{6}
Divide 12a-14 by 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}