Solve for x
x>\frac{13}{2}
Graph
Share
Copied to clipboard
-15-\left(x+4\right)>33-9x
Multiply both sides of the equation by 3. Since 3 is positive, the inequality direction remains the same.
-15-x-4>33-9x
To find the opposite of x+4, find the opposite of each term.
-19-x>33-9x
Subtract 4 from -15 to get -19.
-19-x+9x>33
Add 9x to both sides.
-19+8x>33
Combine -x and 9x to get 8x.
8x>33+19
Add 19 to both sides.
8x>52
Add 33 and 19 to get 52.
x>\frac{52}{8}
Divide both sides by 8. Since 8 is positive, the inequality direction remains the same.
x>\frac{13}{2}
Reduce the fraction \frac{52}{8} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}