Solve for v
v = -\frac{17}{8} = -2\frac{1}{8} = -2.125
Share
Copied to clipboard
-5v-15+2v+7=5v+9
Use the distributive property to multiply -5 by v+3.
-3v-15+7=5v+9
Combine -5v and 2v to get -3v.
-3v-8=5v+9
Add -15 and 7 to get -8.
-3v-8-5v=9
Subtract 5v from both sides.
-8v-8=9
Combine -3v and -5v to get -8v.
-8v=9+8
Add 8 to both sides.
-8v=17
Add 9 and 8 to get 17.
v=\frac{17}{-8}
Divide both sides by -8.
v=-\frac{17}{8}
Fraction \frac{17}{-8} can be rewritten as -\frac{17}{8} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}