Solve for c
c=\frac{t+2}{t}
t\neq 0
Solve for t
t=\frac{2}{c-1}
c\neq 1
Share
Copied to clipboard
t+2=ct
Cancel out -5 on both sides.
ct=t+2
Swap sides so that all variable terms are on the left hand side.
tc=t+2
The equation is in standard form.
\frac{tc}{t}=\frac{t+2}{t}
Divide both sides by t.
c=\frac{t+2}{t}
Dividing by t undoes the multiplication by t.
t+2=ct
Cancel out -5 on both sides.
t+2-ct=0
Subtract ct from both sides.
t-ct=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
\left(1-c\right)t=-2
Combine all terms containing t.
\frac{\left(1-c\right)t}{1-c}=-\frac{2}{1-c}
Divide both sides by 1-c.
t=-\frac{2}{1-c}
Dividing by 1-c undoes the multiplication by 1-c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}