Solve for t
t=-\frac{25}{\mu -22}
\mu \neq 22
Solve for μ
\mu =22-\frac{25}{t}
t\neq 0
Share
Copied to clipboard
-20t+20+\mu t=2t-5
Use the distributive property to multiply -5 by 4t-4.
-20t+20+\mu t-2t=-5
Subtract 2t from both sides.
-22t+20+\mu t=-5
Combine -20t and -2t to get -22t.
-22t+\mu t=-5-20
Subtract 20 from both sides.
-22t+\mu t=-25
Subtract 20 from -5 to get -25.
\left(-22+\mu \right)t=-25
Combine all terms containing t.
\left(\mu -22\right)t=-25
The equation is in standard form.
\frac{\left(\mu -22\right)t}{\mu -22}=-\frac{25}{\mu -22}
Divide both sides by \mu -22.
t=-\frac{25}{\mu -22}
Dividing by \mu -22 undoes the multiplication by \mu -22.
-20t+20+\mu t=2t-5
Use the distributive property to multiply -5 by 4t-4.
20+\mu t=2t-5+20t
Add 20t to both sides.
20+\mu t=22t-5
Combine 2t and 20t to get 22t.
\mu t=22t-5-20
Subtract 20 from both sides.
\mu t=22t-25
Subtract 20 from -5 to get -25.
t\mu =22t-25
The equation is in standard form.
\frac{t\mu }{t}=\frac{22t-25}{t}
Divide both sides by t.
\mu =\frac{22t-25}{t}
Dividing by t undoes the multiplication by t.
\mu =22-\frac{25}{t}
Divide 22t-25 by t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}