Solve for t
t=\frac{19}{23}\approx 0.826086957
Share
Copied to clipboard
-20t+15+4t=7t-4
Use the distributive property to multiply -5 by 4t-3.
-16t+15=7t-4
Combine -20t and 4t to get -16t.
-16t+15-7t=-4
Subtract 7t from both sides.
-23t+15=-4
Combine -16t and -7t to get -23t.
-23t=-4-15
Subtract 15 from both sides.
-23t=-19
Subtract 15 from -4 to get -19.
t=\frac{-19}{-23}
Divide both sides by -23.
t=\frac{19}{23}
Fraction \frac{-19}{-23} can be simplified to \frac{19}{23} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}