Solve for w
w=-\frac{1}{8}=-0.125
Share
Copied to clipboard
25w-35-4w=5\left(w-6\right)-7
Use the distributive property to multiply -5 by -5w+7.
21w-35=5\left(w-6\right)-7
Combine 25w and -4w to get 21w.
21w-35=5w-30-7
Use the distributive property to multiply 5 by w-6.
21w-35=5w-37
Subtract 7 from -30 to get -37.
21w-35-5w=-37
Subtract 5w from both sides.
16w-35=-37
Combine 21w and -5w to get 16w.
16w=-37+35
Add 35 to both sides.
16w=-2
Add -37 and 35 to get -2.
w=\frac{-2}{16}
Divide both sides by 16.
w=-\frac{1}{8}
Reduce the fraction \frac{-2}{16} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}