Solve for x
x=-\frac{25}{44}\approx -0.568181818
Graph
Share
Copied to clipboard
-5\left(-\frac{1}{2}+2x\right)=-\left(-3\left(6x+5\right)\right)-6x
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
-5\left(-\frac{1}{2}\right)-10x=-\left(-3\left(6x+5\right)\right)-6x
Use the distributive property to multiply -5 by -\frac{1}{2}+2x.
\frac{-5\left(-1\right)}{2}-10x=-\left(-3\left(6x+5\right)\right)-6x
Express -5\left(-\frac{1}{2}\right) as a single fraction.
\frac{5}{2}-10x=-\left(-3\left(6x+5\right)\right)-6x
Multiply -5 and -1 to get 5.
\frac{5}{2}-10x=-\left(-18x-15\right)-6x
Use the distributive property to multiply -3 by 6x+5.
\frac{5}{2}-10x=-\left(-18x\right)-\left(-15\right)-6x
To find the opposite of -18x-15, find the opposite of each term.
\frac{5}{2}-10x=18x-\left(-15\right)-6x
The opposite of -18x is 18x.
\frac{5}{2}-10x=18x+15-6x
The opposite of -15 is 15.
\frac{5}{2}-10x=12x+15
Combine 18x and -6x to get 12x.
\frac{5}{2}-10x-12x=15
Subtract 12x from both sides.
\frac{5}{2}-22x=15
Combine -10x and -12x to get -22x.
-22x=15-\frac{5}{2}
Subtract \frac{5}{2} from both sides.
-22x=\frac{30}{2}-\frac{5}{2}
Convert 15 to fraction \frac{30}{2}.
-22x=\frac{30-5}{2}
Since \frac{30}{2} and \frac{5}{2} have the same denominator, subtract them by subtracting their numerators.
-22x=\frac{25}{2}
Subtract 5 from 30 to get 25.
x=\frac{\frac{25}{2}}{-22}
Divide both sides by -22.
x=\frac{25}{2\left(-22\right)}
Express \frac{\frac{25}{2}}{-22} as a single fraction.
x=\frac{25}{-44}
Multiply 2 and -22 to get -44.
x=-\frac{25}{44}
Fraction \frac{25}{-44} can be rewritten as -\frac{25}{44} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}