Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-5\times \frac{\sqrt{8}}{\sqrt{27}}\sqrt{\frac{4+1}{4}}\left(-3\right)\sqrt{54}
Rewrite the square root of the division \sqrt{\frac{8}{27}} as the division of square roots \frac{\sqrt{8}}{\sqrt{27}}.
-5\times \frac{2\sqrt{2}}{\sqrt{27}}\sqrt{\frac{4+1}{4}}\left(-3\right)\sqrt{54}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
-5\times \frac{2\sqrt{2}}{3\sqrt{3}}\sqrt{\frac{4+1}{4}}\left(-3\right)\sqrt{54}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
-5\times \frac{2\sqrt{2}\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}\sqrt{\frac{4+1}{4}}\left(-3\right)\sqrt{54}
Rationalize the denominator of \frac{2\sqrt{2}}{3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
-5\times \frac{2\sqrt{2}\sqrt{3}}{3\times 3}\sqrt{\frac{4+1}{4}}\left(-3\right)\sqrt{54}
The square of \sqrt{3} is 3.
-5\times \frac{2\sqrt{6}}{3\times 3}\sqrt{\frac{4+1}{4}}\left(-3\right)\sqrt{54}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
-5\times \frac{2\sqrt{6}}{9}\sqrt{\frac{4+1}{4}}\left(-3\right)\sqrt{54}
Multiply 3 and 3 to get 9.
-5\times \frac{2\sqrt{6}}{9}\sqrt{\frac{5}{4}}\left(-3\right)\sqrt{54}
Add 4 and 1 to get 5.
-5\times \frac{2\sqrt{6}}{9}\times \frac{\sqrt{5}}{\sqrt{4}}\left(-3\right)\sqrt{54}
Rewrite the square root of the division \sqrt{\frac{5}{4}} as the division of square roots \frac{\sqrt{5}}{\sqrt{4}}.
-5\times \frac{2\sqrt{6}}{9}\times \frac{\sqrt{5}}{2}\left(-3\right)\sqrt{54}
Calculate the square root of 4 and get 2.
15\times \frac{2\sqrt{6}}{9}\times \frac{\sqrt{5}}{2}\sqrt{54}
Multiply -5 and -3 to get 15.
15\times \frac{2\sqrt{6}}{9}\times \frac{\sqrt{5}}{2}\times 3\sqrt{6}
Factor 54=3^{2}\times 6. Rewrite the square root of the product \sqrt{3^{2}\times 6} as the product of square roots \sqrt{3^{2}}\sqrt{6}. Take the square root of 3^{2}.
45\times \frac{2\sqrt{6}}{9}\times \frac{\sqrt{5}}{2}\sqrt{6}
Multiply 15 and 3 to get 45.
5\times 2\sqrt{6}\times \frac{\sqrt{5}}{2}\sqrt{6}
Cancel out 9, the greatest common factor in 45 and 9.
\frac{5\times 2\sqrt{6}\sqrt{5}}{2}\sqrt{6}
Express 5\times 2\sqrt{6}\times \frac{\sqrt{5}}{2} as a single fraction.
5\sqrt{6}\sqrt{5}\sqrt{6}
Cancel out 2 and 2.
5\times 6\sqrt{5}
Multiply \sqrt{6} and \sqrt{6} to get 6.
30\sqrt{5}
Multiply 5 and 6 to get 30.