Evaluate
-\frac{40\sqrt{37}}{3}\approx -81.103500404
Share
Copied to clipboard
-15\sqrt{\frac{8}{27}}\sqrt{\frac{3+1}{3}}\sqrt{74}
Multiply 3 and -5 to get -15.
-15\times \frac{\sqrt{8}}{\sqrt{27}}\sqrt{\frac{3+1}{3}}\sqrt{74}
Rewrite the square root of the division \sqrt{\frac{8}{27}} as the division of square roots \frac{\sqrt{8}}{\sqrt{27}}.
-15\times \frac{2\sqrt{2}}{\sqrt{27}}\sqrt{\frac{3+1}{3}}\sqrt{74}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
-15\times \frac{2\sqrt{2}}{3\sqrt{3}}\sqrt{\frac{3+1}{3}}\sqrt{74}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
-15\times \frac{2\sqrt{2}\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}\sqrt{\frac{3+1}{3}}\sqrt{74}
Rationalize the denominator of \frac{2\sqrt{2}}{3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
-15\times \frac{2\sqrt{2}\sqrt{3}}{3\times 3}\sqrt{\frac{3+1}{3}}\sqrt{74}
The square of \sqrt{3} is 3.
-15\times \frac{2\sqrt{6}}{3\times 3}\sqrt{\frac{3+1}{3}}\sqrt{74}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
-15\times \frac{2\sqrt{6}}{9}\sqrt{\frac{3+1}{3}}\sqrt{74}
Multiply 3 and 3 to get 9.
-15\times \frac{2\sqrt{6}}{9}\sqrt{\frac{4}{3}}\sqrt{74}
Add 3 and 1 to get 4.
-15\times \frac{2\sqrt{6}}{9}\times \frac{\sqrt{4}}{\sqrt{3}}\sqrt{74}
Rewrite the square root of the division \sqrt{\frac{4}{3}} as the division of square roots \frac{\sqrt{4}}{\sqrt{3}}.
-15\times \frac{2\sqrt{6}}{9}\times \frac{2}{\sqrt{3}}\sqrt{74}
Calculate the square root of 4 and get 2.
-15\times \frac{2\sqrt{6}}{9}\times \frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\sqrt{74}
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
-15\times \frac{2\sqrt{6}}{9}\times \frac{2\sqrt{3}}{3}\sqrt{74}
The square of \sqrt{3} is 3.
\frac{-15\times 2\sqrt{6}}{9}\times \frac{2\sqrt{3}}{3}\sqrt{74}
Express -15\times \frac{2\sqrt{6}}{9} as a single fraction.
\frac{-15\times 2\sqrt{6}\times 2\sqrt{3}}{9\times 3}\sqrt{74}
Multiply \frac{-15\times 2\sqrt{6}}{9} times \frac{2\sqrt{3}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-2\times 2\times 5\sqrt{3}\sqrt{6}}{3\times 3}\sqrt{74}
Cancel out 3 in both numerator and denominator.
\frac{-2\times 2\times 5\sqrt{3}\sqrt{6}\sqrt{74}}{3\times 3}
Express \frac{-2\times 2\times 5\sqrt{3}\sqrt{6}}{3\times 3}\sqrt{74} as a single fraction.
\frac{-2\times 2\times 5\sqrt{3}\sqrt{3}\sqrt{2}\sqrt{74}}{3\times 3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{-2\times 2\times 5\times 3\sqrt{2}\sqrt{74}}{3\times 3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{-2\times 2\times 5\times 3\sqrt{2}\sqrt{2}\sqrt{37}}{3\times 3}
Factor 74=2\times 37. Rewrite the square root of the product \sqrt{2\times 37} as the product of square roots \sqrt{2}\sqrt{37}.
\frac{-2\times 2\times 5\times 3\times 2\sqrt{37}}{3\times 3}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{-4\times 5\times 3\times 2\sqrt{37}}{3\times 3}
Multiply -2 and 2 to get -4.
\frac{-20\times 3\times 2\sqrt{37}}{3\times 3}
Multiply -4 and 5 to get -20.
\frac{-60\times 2\sqrt{37}}{3\times 3}
Multiply -20 and 3 to get -60.
\frac{-120\sqrt{37}}{3\times 3}
Multiply -60 and 2 to get -120.
\frac{-120\sqrt{37}}{9}
Multiply 3 and 3 to get 9.
-\frac{40}{3}\sqrt{37}
Divide -120\sqrt{37} by 9 to get -\frac{40}{3}\sqrt{37}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}