Evaluate
\frac{41}{24}\approx 1.708333333
Factor
\frac{41}{2 ^ {3} \cdot 3} = 1\frac{17}{24} = 1.7083333333333333
Share
Copied to clipboard
-\frac{40+3}{8}+\frac{4\times 6+5}{6}-\left(-\frac{2\times 4+1}{4}\right)
Multiply 5 and 8 to get 40.
-\frac{43}{8}+\frac{4\times 6+5}{6}-\left(-\frac{2\times 4+1}{4}\right)
Add 40 and 3 to get 43.
-\frac{43}{8}+\frac{24+5}{6}-\left(-\frac{2\times 4+1}{4}\right)
Multiply 4 and 6 to get 24.
-\frac{43}{8}+\frac{29}{6}-\left(-\frac{2\times 4+1}{4}\right)
Add 24 and 5 to get 29.
-\frac{129}{24}+\frac{116}{24}-\left(-\frac{2\times 4+1}{4}\right)
Least common multiple of 8 and 6 is 24. Convert -\frac{43}{8} and \frac{29}{6} to fractions with denominator 24.
\frac{-129+116}{24}-\left(-\frac{2\times 4+1}{4}\right)
Since -\frac{129}{24} and \frac{116}{24} have the same denominator, add them by adding their numerators.
-\frac{13}{24}-\left(-\frac{2\times 4+1}{4}\right)
Add -129 and 116 to get -13.
-\frac{13}{24}-\left(-\frac{8+1}{4}\right)
Multiply 2 and 4 to get 8.
-\frac{13}{24}-\left(-\frac{9}{4}\right)
Add 8 and 1 to get 9.
-\frac{13}{24}+\frac{9}{4}
The opposite of -\frac{9}{4} is \frac{9}{4}.
-\frac{13}{24}+\frac{54}{24}
Least common multiple of 24 and 4 is 24. Convert -\frac{13}{24} and \frac{9}{4} to fractions with denominator 24.
\frac{-13+54}{24}
Since -\frac{13}{24} and \frac{54}{24} have the same denominator, add them by adding their numerators.
\frac{41}{24}
Add -13 and 54 to get 41.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}