Evaluate
-\frac{155}{196}\approx -0.790816327
Factor
-\frac{155}{196} = -0.7908163265306123
Share
Copied to clipboard
-5\times \frac{1}{14}\times \frac{-5^{2}+4\times 7\times 2}{2\times 7}
Multiply 2 and 7 to get 14.
\frac{-5}{14}\times \frac{-5^{2}+4\times 7\times 2}{2\times 7}
Multiply -5 and \frac{1}{14} to get \frac{-5}{14}.
-\frac{5}{14}\times \frac{-5^{2}+4\times 7\times 2}{2\times 7}
Fraction \frac{-5}{14} can be rewritten as -\frac{5}{14} by extracting the negative sign.
-\frac{5}{14}\times \frac{-25+4\times 7\times 2}{2\times 7}
Calculate 5 to the power of 2 and get 25.
-\frac{5}{14}\times \frac{-25+28\times 2}{2\times 7}
Multiply 4 and 7 to get 28.
-\frac{5}{14}\times \frac{-25+56}{2\times 7}
Multiply 28 and 2 to get 56.
-\frac{5}{14}\times \frac{31}{2\times 7}
Add -25 and 56 to get 31.
-\frac{5}{14}\times \frac{31}{14}
Multiply 2 and 7 to get 14.
\frac{-5\times 31}{14\times 14}
Multiply -\frac{5}{14} times \frac{31}{14} by multiplying numerator times numerator and denominator times denominator.
\frac{-155}{196}
Do the multiplications in the fraction \frac{-5\times 31}{14\times 14}.
-\frac{155}{196}
Fraction \frac{-155}{196} can be rewritten as -\frac{155}{196} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}