Solve for x
x=-iy-21
Solve for y
y=ix+21i
Share
Copied to clipboard
-5\left(5-2\right)-\left(x+yi\right)=6
Calculate the square root of 4 and get 2.
-5\times 3-\left(x+yi\right)=6
Subtract 2 from 5 to get 3.
-15-\left(x+yi\right)=6
Multiply -5 and 3 to get -15.
-15-x-yi=6
To find the opposite of x+yi, find the opposite of each term.
-15-x-iy=6
Multiply -1 and i to get -i.
-x-iy=6+15
Add 15 to both sides.
-x-iy=21
Add 6 and 15 to get 21.
-x=21-\left(-iy\right)
Subtract -iy from both sides.
-x=21+iy
Multiply -1 and -i to get i.
-x=iy+21
The equation is in standard form.
\frac{-x}{-1}=\frac{iy+21}{-1}
Divide both sides by -1.
x=\frac{iy+21}{-1}
Dividing by -1 undoes the multiplication by -1.
x=-iy-21
Divide 21+iy by -1.
-5\left(5-2\right)-\left(x+yi\right)=6
Calculate the square root of 4 and get 2.
-5\times 3-\left(x+yi\right)=6
Subtract 2 from 5 to get 3.
-15-\left(x+yi\right)=6
Multiply -5 and 3 to get -15.
-15-x-yi=6
To find the opposite of x+yi, find the opposite of each term.
-15-x-iy=6
Multiply -1 and i to get -i.
-x-iy=6+15
Add 15 to both sides.
-x-iy=21
Add 6 and 15 to get 21.
-iy=21+x
Add x to both sides.
-iy=x+21
The equation is in standard form.
\frac{-iy}{-i}=\frac{x+21}{-i}
Divide both sides by -i.
y=\frac{x+21}{-i}
Dividing by -i undoes the multiplication by -i.
y=ix+21i
Divide 21+x by -i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}