Solve for x (complex solution)
x=\frac{-1+\sqrt{239}i}{40}\approx -0.025+0.386490621i
x=\frac{-\sqrt{239}i-1}{40}\approx -0.025-0.386490621i
Graph
Share
Copied to clipboard
-\frac{10}{3}x^{2}-\frac{1}{6}x-\frac{1}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{1}{6}\right)±\sqrt{\left(-\frac{1}{6}\right)^{2}-4\left(-\frac{10}{3}\right)\left(-\frac{1}{2}\right)}}{2\left(-\frac{10}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{10}{3} for a, -\frac{1}{6} for b, and -\frac{1}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{6}\right)±\sqrt{\frac{1}{36}-4\left(-\frac{10}{3}\right)\left(-\frac{1}{2}\right)}}{2\left(-\frac{10}{3}\right)}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{1}{6}\right)±\sqrt{\frac{1}{36}+\frac{40}{3}\left(-\frac{1}{2}\right)}}{2\left(-\frac{10}{3}\right)}
Multiply -4 times -\frac{10}{3}.
x=\frac{-\left(-\frac{1}{6}\right)±\sqrt{\frac{1}{36}-\frac{20}{3}}}{2\left(-\frac{10}{3}\right)}
Multiply \frac{40}{3} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{1}{6}\right)±\sqrt{-\frac{239}{36}}}{2\left(-\frac{10}{3}\right)}
Add \frac{1}{36} to -\frac{20}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{1}{6}\right)±\frac{\sqrt{239}i}{6}}{2\left(-\frac{10}{3}\right)}
Take the square root of -\frac{239}{36}.
x=\frac{\frac{1}{6}±\frac{\sqrt{239}i}{6}}{2\left(-\frac{10}{3}\right)}
The opposite of -\frac{1}{6} is \frac{1}{6}.
x=\frac{\frac{1}{6}±\frac{\sqrt{239}i}{6}}{-\frac{20}{3}}
Multiply 2 times -\frac{10}{3}.
x=\frac{1+\sqrt{239}i}{-\frac{20}{3}\times 6}
Now solve the equation x=\frac{\frac{1}{6}±\frac{\sqrt{239}i}{6}}{-\frac{20}{3}} when ± is plus. Add \frac{1}{6} to \frac{i\sqrt{239}}{6}.
x=\frac{-\sqrt{239}i-1}{40}
Divide \frac{1+i\sqrt{239}}{6} by -\frac{20}{3} by multiplying \frac{1+i\sqrt{239}}{6} by the reciprocal of -\frac{20}{3}.
x=\frac{-\sqrt{239}i+1}{-\frac{20}{3}\times 6}
Now solve the equation x=\frac{\frac{1}{6}±\frac{\sqrt{239}i}{6}}{-\frac{20}{3}} when ± is minus. Subtract \frac{i\sqrt{239}}{6} from \frac{1}{6}.
x=\frac{-1+\sqrt{239}i}{40}
Divide \frac{1-i\sqrt{239}}{6} by -\frac{20}{3} by multiplying \frac{1-i\sqrt{239}}{6} by the reciprocal of -\frac{20}{3}.
x=\frac{-\sqrt{239}i-1}{40} x=\frac{-1+\sqrt{239}i}{40}
The equation is now solved.
-\frac{10}{3}x^{2}-\frac{1}{6}x-\frac{1}{2}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{10}{3}x^{2}-\frac{1}{6}x-\frac{1}{2}-\left(-\frac{1}{2}\right)=-\left(-\frac{1}{2}\right)
Add \frac{1}{2} to both sides of the equation.
-\frac{10}{3}x^{2}-\frac{1}{6}x=-\left(-\frac{1}{2}\right)
Subtracting -\frac{1}{2} from itself leaves 0.
-\frac{10}{3}x^{2}-\frac{1}{6}x=\frac{1}{2}
Subtract -\frac{1}{2} from 0.
\frac{-\frac{10}{3}x^{2}-\frac{1}{6}x}{-\frac{10}{3}}=\frac{\frac{1}{2}}{-\frac{10}{3}}
Divide both sides of the equation by -\frac{10}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{1}{6}}{-\frac{10}{3}}\right)x=\frac{\frac{1}{2}}{-\frac{10}{3}}
Dividing by -\frac{10}{3} undoes the multiplication by -\frac{10}{3}.
x^{2}+\frac{1}{20}x=\frac{\frac{1}{2}}{-\frac{10}{3}}
Divide -\frac{1}{6} by -\frac{10}{3} by multiplying -\frac{1}{6} by the reciprocal of -\frac{10}{3}.
x^{2}+\frac{1}{20}x=-\frac{3}{20}
Divide \frac{1}{2} by -\frac{10}{3} by multiplying \frac{1}{2} by the reciprocal of -\frac{10}{3}.
x^{2}+\frac{1}{20}x+\left(\frac{1}{40}\right)^{2}=-\frac{3}{20}+\left(\frac{1}{40}\right)^{2}
Divide \frac{1}{20}, the coefficient of the x term, by 2 to get \frac{1}{40}. Then add the square of \frac{1}{40} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{20}x+\frac{1}{1600}=-\frac{3}{20}+\frac{1}{1600}
Square \frac{1}{40} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{20}x+\frac{1}{1600}=-\frac{239}{1600}
Add -\frac{3}{20} to \frac{1}{1600} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{40}\right)^{2}=-\frac{239}{1600}
Factor x^{2}+\frac{1}{20}x+\frac{1}{1600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{40}\right)^{2}}=\sqrt{-\frac{239}{1600}}
Take the square root of both sides of the equation.
x+\frac{1}{40}=\frac{\sqrt{239}i}{40} x+\frac{1}{40}=-\frac{\sqrt{239}i}{40}
Simplify.
x=\frac{-1+\sqrt{239}i}{40} x=\frac{-\sqrt{239}i-1}{40}
Subtract \frac{1}{40} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}