Solve for q
q=\frac{\sqrt{105}-5}{8}\approx 0.655868846
q=\frac{-\sqrt{105}-5}{8}\approx -1.905868846
Share
Copied to clipboard
-4q^{2}-5q=-5
Swap sides so that all variable terms are on the left hand side.
-4q^{2}-5q+5=0
Add 5 to both sides.
q=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-4\right)\times 5}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -5 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-\left(-5\right)±\sqrt{25-4\left(-4\right)\times 5}}{2\left(-4\right)}
Square -5.
q=\frac{-\left(-5\right)±\sqrt{25+16\times 5}}{2\left(-4\right)}
Multiply -4 times -4.
q=\frac{-\left(-5\right)±\sqrt{25+80}}{2\left(-4\right)}
Multiply 16 times 5.
q=\frac{-\left(-5\right)±\sqrt{105}}{2\left(-4\right)}
Add 25 to 80.
q=\frac{5±\sqrt{105}}{2\left(-4\right)}
The opposite of -5 is 5.
q=\frac{5±\sqrt{105}}{-8}
Multiply 2 times -4.
q=\frac{\sqrt{105}+5}{-8}
Now solve the equation q=\frac{5±\sqrt{105}}{-8} when ± is plus. Add 5 to \sqrt{105}.
q=\frac{-\sqrt{105}-5}{8}
Divide 5+\sqrt{105} by -8.
q=\frac{5-\sqrt{105}}{-8}
Now solve the equation q=\frac{5±\sqrt{105}}{-8} when ± is minus. Subtract \sqrt{105} from 5.
q=\frac{\sqrt{105}-5}{8}
Divide 5-\sqrt{105} by -8.
q=\frac{-\sqrt{105}-5}{8} q=\frac{\sqrt{105}-5}{8}
The equation is now solved.
-4q^{2}-5q=-5
Swap sides so that all variable terms are on the left hand side.
\frac{-4q^{2}-5q}{-4}=-\frac{5}{-4}
Divide both sides by -4.
q^{2}+\left(-\frac{5}{-4}\right)q=-\frac{5}{-4}
Dividing by -4 undoes the multiplication by -4.
q^{2}+\frac{5}{4}q=-\frac{5}{-4}
Divide -5 by -4.
q^{2}+\frac{5}{4}q=\frac{5}{4}
Divide -5 by -4.
q^{2}+\frac{5}{4}q+\left(\frac{5}{8}\right)^{2}=\frac{5}{4}+\left(\frac{5}{8}\right)^{2}
Divide \frac{5}{4}, the coefficient of the x term, by 2 to get \frac{5}{8}. Then add the square of \frac{5}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
q^{2}+\frac{5}{4}q+\frac{25}{64}=\frac{5}{4}+\frac{25}{64}
Square \frac{5}{8} by squaring both the numerator and the denominator of the fraction.
q^{2}+\frac{5}{4}q+\frac{25}{64}=\frac{105}{64}
Add \frac{5}{4} to \frac{25}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(q+\frac{5}{8}\right)^{2}=\frac{105}{64}
Factor q^{2}+\frac{5}{4}q+\frac{25}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q+\frac{5}{8}\right)^{2}}=\sqrt{\frac{105}{64}}
Take the square root of both sides of the equation.
q+\frac{5}{8}=\frac{\sqrt{105}}{8} q+\frac{5}{8}=-\frac{\sqrt{105}}{8}
Simplify.
q=\frac{\sqrt{105}-5}{8} q=\frac{-\sqrt{105}-5}{8}
Subtract \frac{5}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}