Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-49x^{2}+48x-20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-48±\sqrt{48^{2}-4\left(-49\right)\left(-20\right)}}{2\left(-49\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -49 for a, 48 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-48±\sqrt{2304-4\left(-49\right)\left(-20\right)}}{2\left(-49\right)}
Square 48.
x=\frac{-48±\sqrt{2304+196\left(-20\right)}}{2\left(-49\right)}
Multiply -4 times -49.
x=\frac{-48±\sqrt{2304-3920}}{2\left(-49\right)}
Multiply 196 times -20.
x=\frac{-48±\sqrt{-1616}}{2\left(-49\right)}
Add 2304 to -3920.
x=\frac{-48±4\sqrt{101}i}{2\left(-49\right)}
Take the square root of -1616.
x=\frac{-48±4\sqrt{101}i}{-98}
Multiply 2 times -49.
x=\frac{-48+4\sqrt{101}i}{-98}
Now solve the equation x=\frac{-48±4\sqrt{101}i}{-98} when ± is plus. Add -48 to 4i\sqrt{101}.
x=\frac{-2\sqrt{101}i+24}{49}
Divide -48+4i\sqrt{101} by -98.
x=\frac{-4\sqrt{101}i-48}{-98}
Now solve the equation x=\frac{-48±4\sqrt{101}i}{-98} when ± is minus. Subtract 4i\sqrt{101} from -48.
x=\frac{24+2\sqrt{101}i}{49}
Divide -48-4i\sqrt{101} by -98.
x=\frac{-2\sqrt{101}i+24}{49} x=\frac{24+2\sqrt{101}i}{49}
The equation is now solved.
-49x^{2}+48x-20=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-49x^{2}+48x-20-\left(-20\right)=-\left(-20\right)
Add 20 to both sides of the equation.
-49x^{2}+48x=-\left(-20\right)
Subtracting -20 from itself leaves 0.
-49x^{2}+48x=20
Subtract -20 from 0.
\frac{-49x^{2}+48x}{-49}=\frac{20}{-49}
Divide both sides by -49.
x^{2}+\frac{48}{-49}x=\frac{20}{-49}
Dividing by -49 undoes the multiplication by -49.
x^{2}-\frac{48}{49}x=\frac{20}{-49}
Divide 48 by -49.
x^{2}-\frac{48}{49}x=-\frac{20}{49}
Divide 20 by -49.
x^{2}-\frac{48}{49}x+\left(-\frac{24}{49}\right)^{2}=-\frac{20}{49}+\left(-\frac{24}{49}\right)^{2}
Divide -\frac{48}{49}, the coefficient of the x term, by 2 to get -\frac{24}{49}. Then add the square of -\frac{24}{49} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{48}{49}x+\frac{576}{2401}=-\frac{20}{49}+\frac{576}{2401}
Square -\frac{24}{49} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{48}{49}x+\frac{576}{2401}=-\frac{404}{2401}
Add -\frac{20}{49} to \frac{576}{2401} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{24}{49}\right)^{2}=-\frac{404}{2401}
Factor x^{2}-\frac{48}{49}x+\frac{576}{2401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{24}{49}\right)^{2}}=\sqrt{-\frac{404}{2401}}
Take the square root of both sides of the equation.
x-\frac{24}{49}=\frac{2\sqrt{101}i}{49} x-\frac{24}{49}=-\frac{2\sqrt{101}i}{49}
Simplify.
x=\frac{24+2\sqrt{101}i}{49} x=\frac{-2\sqrt{101}i+24}{49}
Add \frac{24}{49} to both sides of the equation.