Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

-48-121^{2}-\left(\frac{-29}{-11}\right)^{2}-\left(-2\right)^{6}+\left(-3^{0}\right)^{10}-\left(2\left(-5\right)\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
-48-14641-\left(\frac{-29}{-11}\right)^{2}-\left(-2\right)^{6}+\left(-3^{0}\right)^{10}-\left(2\left(-5\right)\right)^{2}
Calculate 121 to the power of 2 and get 14641.
-14689-\left(\frac{-29}{-11}\right)^{2}-\left(-2\right)^{6}+\left(-3^{0}\right)^{10}-\left(2\left(-5\right)\right)^{2}
Subtract 14641 from -48 to get -14689.
-14689-\left(\frac{29}{11}\right)^{2}-\left(-2\right)^{6}+\left(-3^{0}\right)^{10}-\left(2\left(-5\right)\right)^{2}
Fraction \frac{-29}{-11} can be simplified to \frac{29}{11} by removing the negative sign from both the numerator and the denominator.
-14689-\frac{841}{121}-\left(-2\right)^{6}+\left(-3^{0}\right)^{10}-\left(2\left(-5\right)\right)^{2}
Calculate \frac{29}{11} to the power of 2 and get \frac{841}{121}.
-\frac{1778210}{121}-\left(-2\right)^{6}+\left(-3^{0}\right)^{10}-\left(2\left(-5\right)\right)^{2}
Subtract \frac{841}{121} from -14689 to get -\frac{1778210}{121}.
-\frac{1778210}{121}-64+\left(-3^{0}\right)^{10}-\left(2\left(-5\right)\right)^{2}
Calculate -2 to the power of 6 and get 64.
-\frac{1785954}{121}+\left(-3^{0}\right)^{10}-\left(2\left(-5\right)\right)^{2}
Subtract 64 from -\frac{1778210}{121} to get -\frac{1785954}{121}.
-\frac{1785954}{121}+\left(-1\right)^{10}-\left(2\left(-5\right)\right)^{2}
Calculate 3 to the power of 0 and get 1.
-\frac{1785954}{121}+1-\left(2\left(-5\right)\right)^{2}
Calculate -1 to the power of 10 and get 1.
-\frac{1785833}{121}-\left(2\left(-5\right)\right)^{2}
Add -\frac{1785954}{121} and 1 to get -\frac{1785833}{121}.
-\frac{1785833}{121}-\left(-10\right)^{2}
Multiply 2 and -5 to get -10.
-\frac{1785833}{121}-100
Calculate -10 to the power of 2 and get 100.
-\frac{1797933}{121}
Subtract 100 from -\frac{1785833}{121} to get -\frac{1797933}{121}.