Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

-96=n\left(2\times 9\left(n-1\right)-2\right)
Multiply both sides of the equation by 2.
-96=n\left(18\left(n-1\right)-2\right)
Multiply 2 and 9 to get 18.
-96=n\left(18n-18-2\right)
Use the distributive property to multiply 18 by n-1.
-96=n\left(18n-20\right)
Subtract 2 from -18 to get -20.
-96=18n^{2}-20n
Use the distributive property to multiply n by 18n-20.
18n^{2}-20n=-96
Swap sides so that all variable terms are on the left hand side.
18n^{2}-20n+96=0
Add 96 to both sides.
n=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 18\times 96}}{2\times 18}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 18 for a, -20 for b, and 96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-20\right)±\sqrt{400-4\times 18\times 96}}{2\times 18}
Square -20.
n=\frac{-\left(-20\right)±\sqrt{400-72\times 96}}{2\times 18}
Multiply -4 times 18.
n=\frac{-\left(-20\right)±\sqrt{400-6912}}{2\times 18}
Multiply -72 times 96.
n=\frac{-\left(-20\right)±\sqrt{-6512}}{2\times 18}
Add 400 to -6912.
n=\frac{-\left(-20\right)±4\sqrt{407}i}{2\times 18}
Take the square root of -6512.
n=\frac{20±4\sqrt{407}i}{2\times 18}
The opposite of -20 is 20.
n=\frac{20±4\sqrt{407}i}{36}
Multiply 2 times 18.
n=\frac{20+4\sqrt{407}i}{36}
Now solve the equation n=\frac{20±4\sqrt{407}i}{36} when ± is plus. Add 20 to 4i\sqrt{407}.
n=\frac{5+\sqrt{407}i}{9}
Divide 20+4i\sqrt{407} by 36.
n=\frac{-4\sqrt{407}i+20}{36}
Now solve the equation n=\frac{20±4\sqrt{407}i}{36} when ± is minus. Subtract 4i\sqrt{407} from 20.
n=\frac{-\sqrt{407}i+5}{9}
Divide 20-4i\sqrt{407} by 36.
n=\frac{5+\sqrt{407}i}{9} n=\frac{-\sqrt{407}i+5}{9}
The equation is now solved.
-96=n\left(2\times 9\left(n-1\right)-2\right)
Multiply both sides of the equation by 2.
-96=n\left(18\left(n-1\right)-2\right)
Multiply 2 and 9 to get 18.
-96=n\left(18n-18-2\right)
Use the distributive property to multiply 18 by n-1.
-96=n\left(18n-20\right)
Subtract 2 from -18 to get -20.
-96=18n^{2}-20n
Use the distributive property to multiply n by 18n-20.
18n^{2}-20n=-96
Swap sides so that all variable terms are on the left hand side.
\frac{18n^{2}-20n}{18}=-\frac{96}{18}
Divide both sides by 18.
n^{2}+\left(-\frac{20}{18}\right)n=-\frac{96}{18}
Dividing by 18 undoes the multiplication by 18.
n^{2}-\frac{10}{9}n=-\frac{96}{18}
Reduce the fraction \frac{-20}{18} to lowest terms by extracting and canceling out 2.
n^{2}-\frac{10}{9}n=-\frac{16}{3}
Reduce the fraction \frac{-96}{18} to lowest terms by extracting and canceling out 6.
n^{2}-\frac{10}{9}n+\left(-\frac{5}{9}\right)^{2}=-\frac{16}{3}+\left(-\frac{5}{9}\right)^{2}
Divide -\frac{10}{9}, the coefficient of the x term, by 2 to get -\frac{5}{9}. Then add the square of -\frac{5}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{10}{9}n+\frac{25}{81}=-\frac{16}{3}+\frac{25}{81}
Square -\frac{5}{9} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{10}{9}n+\frac{25}{81}=-\frac{407}{81}
Add -\frac{16}{3} to \frac{25}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{5}{9}\right)^{2}=-\frac{407}{81}
Factor n^{2}-\frac{10}{9}n+\frac{25}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{5}{9}\right)^{2}}=\sqrt{-\frac{407}{81}}
Take the square root of both sides of the equation.
n-\frac{5}{9}=\frac{\sqrt{407}i}{9} n-\frac{5}{9}=-\frac{\sqrt{407}i}{9}
Simplify.
n=\frac{5+\sqrt{407}i}{9} n=\frac{-\sqrt{407}i+5}{9}
Add \frac{5}{9} to both sides of the equation.