Solve for n
n=\frac{62}{99}\approx 0.626262626
Share
Copied to clipboard
-48\times \frac{2}{11}=2\times 9\left(n-1\right)-2
Multiply both sides by \frac{2}{11}, the reciprocal of \frac{11}{2}.
\frac{-48\times 2}{11}=2\times 9\left(n-1\right)-2
Express -48\times \frac{2}{11} as a single fraction.
\frac{-96}{11}=2\times 9\left(n-1\right)-2
Multiply -48 and 2 to get -96.
-\frac{96}{11}=2\times 9\left(n-1\right)-2
Fraction \frac{-96}{11} can be rewritten as -\frac{96}{11} by extracting the negative sign.
-\frac{96}{11}=18\left(n-1\right)-2
Multiply 2 and 9 to get 18.
-\frac{96}{11}=18n-18-2
Use the distributive property to multiply 18 by n-1.
-\frac{96}{11}=18n-20
Subtract 2 from -18 to get -20.
18n-20=-\frac{96}{11}
Swap sides so that all variable terms are on the left hand side.
18n=-\frac{96}{11}+20
Add 20 to both sides.
18n=-\frac{96}{11}+\frac{220}{11}
Convert 20 to fraction \frac{220}{11}.
18n=\frac{-96+220}{11}
Since -\frac{96}{11} and \frac{220}{11} have the same denominator, add them by adding their numerators.
18n=\frac{124}{11}
Add -96 and 220 to get 124.
n=\frac{\frac{124}{11}}{18}
Divide both sides by 18.
n=\frac{124}{11\times 18}
Express \frac{\frac{124}{11}}{18} as a single fraction.
n=\frac{124}{198}
Multiply 11 and 18 to get 198.
n=\frac{62}{99}
Reduce the fraction \frac{124}{198} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}