Solve for n
n=-\frac{16}{3\pi }+\frac{10}{9}\approx -0.586541615
Share
Copied to clipboard
-96=\pi \left(2\times 9\left(n-1\right)-2\right)
Multiply both sides of the equation by 2.
-96=\pi \left(18\left(n-1\right)-2\right)
Multiply 2 and 9 to get 18.
-96=\pi \left(18n-18-2\right)
Use the distributive property to multiply 18 by n-1.
-96=\pi \left(18n-20\right)
Subtract 2 from -18 to get -20.
-96=18\pi n-20\pi
Use the distributive property to multiply \pi by 18n-20.
18\pi n-20\pi =-96
Swap sides so that all variable terms are on the left hand side.
18\pi n=-96+20\pi
Add 20\pi to both sides.
18\pi n=20\pi -96
The equation is in standard form.
\frac{18\pi n}{18\pi }=\frac{20\pi -96}{18\pi }
Divide both sides by 18\pi .
n=\frac{20\pi -96}{18\pi }
Dividing by 18\pi undoes the multiplication by 18\pi .
n=-\frac{16}{3\pi }+\frac{10}{9}
Divide -96+20\pi by 18\pi .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}