Factor
4y\left(7y-10\right)
Evaluate
4y\left(7y-10\right)
Graph
Share
Copied to clipboard
4\left(-10y+7y^{2}\right)
Factor out 4.
y\left(-10+7y\right)
Consider -10y+7y^{2}. Factor out y.
4y\left(7y-10\right)
Rewrite the complete factored expression.
28y^{2}-40y=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}}}{2\times 28}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-40\right)±40}{2\times 28}
Take the square root of \left(-40\right)^{2}.
y=\frac{40±40}{2\times 28}
The opposite of -40 is 40.
y=\frac{40±40}{56}
Multiply 2 times 28.
y=\frac{80}{56}
Now solve the equation y=\frac{40±40}{56} when ± is plus. Add 40 to 40.
y=\frac{10}{7}
Reduce the fraction \frac{80}{56} to lowest terms by extracting and canceling out 8.
y=\frac{0}{56}
Now solve the equation y=\frac{40±40}{56} when ± is minus. Subtract 40 from 40.
y=0
Divide 0 by 56.
28y^{2}-40y=28\left(y-\frac{10}{7}\right)y
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{10}{7} for x_{1} and 0 for x_{2}.
28y^{2}-40y=28\times \frac{7y-10}{7}y
Subtract \frac{10}{7} from y by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
28y^{2}-40y=4\left(7y-10\right)y
Cancel out 7, the greatest common factor in 28 and 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}