Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(-10y+7y^{2}\right)
Factor out 4.
y\left(-10+7y\right)
Consider -10y+7y^{2}. Factor out y.
4y\left(7y-10\right)
Rewrite the complete factored expression.
28y^{2}-40y=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}}}{2\times 28}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-40\right)±40}{2\times 28}
Take the square root of \left(-40\right)^{2}.
y=\frac{40±40}{2\times 28}
The opposite of -40 is 40.
y=\frac{40±40}{56}
Multiply 2 times 28.
y=\frac{80}{56}
Now solve the equation y=\frac{40±40}{56} when ± is plus. Add 40 to 40.
y=\frac{10}{7}
Reduce the fraction \frac{80}{56} to lowest terms by extracting and canceling out 8.
y=\frac{0}{56}
Now solve the equation y=\frac{40±40}{56} when ± is minus. Subtract 40 from 40.
y=0
Divide 0 by 56.
28y^{2}-40y=28\left(y-\frac{10}{7}\right)y
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{10}{7} for x_{1} and 0 for x_{2}.
28y^{2}-40y=28\times \frac{7y-10}{7}y
Subtract \frac{10}{7} from y by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
28y^{2}-40y=4\left(7y-10\right)y
Cancel out 7, the greatest common factor in 28 and 7.