Solve for t
t=-1
Share
Copied to clipboard
-40t-\left(10+12t\right)=42
Use the distributive property to multiply 5+6t by 2.
-40t-10-12t=42
To find the opposite of 10+12t, find the opposite of each term.
-52t-10=42
Combine -40t and -12t to get -52t.
-52t=42+10
Add 10 to both sides.
-52t=52
Add 42 and 10 to get 52.
t=\frac{52}{-52}
Divide both sides by -52.
t=-1
Divide 52 by -52 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}