Factor
-40\left(a-\frac{19-\sqrt{5161}}{80}\right)\left(a-\frac{\sqrt{5161}+19}{80}\right)
Evaluate
30+19a-40a^{2}
Share
Copied to clipboard
-40a^{2}+19a+30=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-19±\sqrt{19^{2}-4\left(-40\right)\times 30}}{2\left(-40\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-19±\sqrt{361-4\left(-40\right)\times 30}}{2\left(-40\right)}
Square 19.
a=\frac{-19±\sqrt{361+160\times 30}}{2\left(-40\right)}
Multiply -4 times -40.
a=\frac{-19±\sqrt{361+4800}}{2\left(-40\right)}
Multiply 160 times 30.
a=\frac{-19±\sqrt{5161}}{2\left(-40\right)}
Add 361 to 4800.
a=\frac{-19±\sqrt{5161}}{-80}
Multiply 2 times -40.
a=\frac{\sqrt{5161}-19}{-80}
Now solve the equation a=\frac{-19±\sqrt{5161}}{-80} when ± is plus. Add -19 to \sqrt{5161}.
a=\frac{19-\sqrt{5161}}{80}
Divide -19+\sqrt{5161} by -80.
a=\frac{-\sqrt{5161}-19}{-80}
Now solve the equation a=\frac{-19±\sqrt{5161}}{-80} when ± is minus. Subtract \sqrt{5161} from -19.
a=\frac{\sqrt{5161}+19}{80}
Divide -19-\sqrt{5161} by -80.
-40a^{2}+19a+30=-40\left(a-\frac{19-\sqrt{5161}}{80}\right)\left(a-\frac{\sqrt{5161}+19}{80}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{19-\sqrt{5161}}{80} for x_{1} and \frac{19+\sqrt{5161}}{80} for x_{2}.
x ^ 2 -\frac{19}{40}x -\frac{3}{4} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{19}{40} rs = -\frac{3}{4}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{19}{80} - u s = \frac{19}{80} + u
Two numbers r and s sum up to \frac{19}{40} exactly when the average of the two numbers is \frac{1}{2}*\frac{19}{40} = \frac{19}{80}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{19}{80} - u) (\frac{19}{80} + u) = -\frac{3}{4}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{3}{4}
\frac{361}{6400} - u^2 = -\frac{3}{4}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{3}{4}-\frac{361}{6400} = -\frac{5161}{6400}
Simplify the expression by subtracting \frac{361}{6400} on both sides
u^2 = \frac{5161}{6400} u = \pm\sqrt{\frac{5161}{6400}} = \pm \frac{\sqrt{5161}}{80}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{19}{80} - \frac{\sqrt{5161}}{80} = -0.661 s = \frac{19}{80} + \frac{\sqrt{5161}}{80} = 1.136
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}