Solve for t
t=\frac{25+i\sqrt{2315}}{98}\approx 0.255102041+0.490963744i
t=\frac{-i\sqrt{2315}+25}{98}\approx 0.255102041-0.490963744i
Share
Copied to clipboard
-4.9t^{2}+2.5t-1.5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-2.5±\sqrt{2.5^{2}-4\left(-4.9\right)\left(-1.5\right)}}{2\left(-4.9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4.9 for a, 2.5 for b, and -1.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-2.5±\sqrt{6.25-4\left(-4.9\right)\left(-1.5\right)}}{2\left(-4.9\right)}
Square 2.5 by squaring both the numerator and the denominator of the fraction.
t=\frac{-2.5±\sqrt{6.25+19.6\left(-1.5\right)}}{2\left(-4.9\right)}
Multiply -4 times -4.9.
t=\frac{-2.5±\sqrt{6.25-29.4}}{2\left(-4.9\right)}
Multiply 19.6 times -1.5 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
t=\frac{-2.5±\sqrt{-23.15}}{2\left(-4.9\right)}
Add 6.25 to -29.4 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=\frac{-2.5±\frac{\sqrt{2315}i}{10}}{2\left(-4.9\right)}
Take the square root of -23.15.
t=\frac{-2.5±\frac{\sqrt{2315}i}{10}}{-9.8}
Multiply 2 times -4.9.
t=\frac{\frac{\sqrt{2315}i}{10}-\frac{5}{2}}{-9.8}
Now solve the equation t=\frac{-2.5±\frac{\sqrt{2315}i}{10}}{-9.8} when ± is plus. Add -2.5 to \frac{i\sqrt{2315}}{10}.
t=\frac{-\sqrt{2315}i+25}{98}
Divide -\frac{5}{2}+\frac{i\sqrt{2315}}{10} by -9.8 by multiplying -\frac{5}{2}+\frac{i\sqrt{2315}}{10} by the reciprocal of -9.8.
t=\frac{-\frac{\sqrt{2315}i}{10}-\frac{5}{2}}{-9.8}
Now solve the equation t=\frac{-2.5±\frac{\sqrt{2315}i}{10}}{-9.8} when ± is minus. Subtract \frac{i\sqrt{2315}}{10} from -2.5.
t=\frac{25+\sqrt{2315}i}{98}
Divide -\frac{5}{2}-\frac{i\sqrt{2315}}{10} by -9.8 by multiplying -\frac{5}{2}-\frac{i\sqrt{2315}}{10} by the reciprocal of -9.8.
t=\frac{-\sqrt{2315}i+25}{98} t=\frac{25+\sqrt{2315}i}{98}
The equation is now solved.
-4.9t^{2}+2.5t-1.5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-4.9t^{2}+2.5t-1.5-\left(-1.5\right)=-\left(-1.5\right)
Add 1.5 to both sides of the equation.
-4.9t^{2}+2.5t=-\left(-1.5\right)
Subtracting -1.5 from itself leaves 0.
-4.9t^{2}+2.5t=1.5
Subtract -1.5 from 0.
\frac{-4.9t^{2}+2.5t}{-4.9}=\frac{1.5}{-4.9}
Divide both sides of the equation by -4.9, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{2.5}{-4.9}t=\frac{1.5}{-4.9}
Dividing by -4.9 undoes the multiplication by -4.9.
t^{2}-\frac{25}{49}t=\frac{1.5}{-4.9}
Divide 2.5 by -4.9 by multiplying 2.5 by the reciprocal of -4.9.
t^{2}-\frac{25}{49}t=-\frac{15}{49}
Divide 1.5 by -4.9 by multiplying 1.5 by the reciprocal of -4.9.
t^{2}-\frac{25}{49}t+\left(-\frac{25}{98}\right)^{2}=-\frac{15}{49}+\left(-\frac{25}{98}\right)^{2}
Divide -\frac{25}{49}, the coefficient of the x term, by 2 to get -\frac{25}{98}. Then add the square of -\frac{25}{98} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{25}{49}t+\frac{625}{9604}=-\frac{15}{49}+\frac{625}{9604}
Square -\frac{25}{98} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{25}{49}t+\frac{625}{9604}=-\frac{2315}{9604}
Add -\frac{15}{49} to \frac{625}{9604} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{25}{98}\right)^{2}=-\frac{2315}{9604}
Factor t^{2}-\frac{25}{49}t+\frac{625}{9604}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{25}{98}\right)^{2}}=\sqrt{-\frac{2315}{9604}}
Take the square root of both sides of the equation.
t-\frac{25}{98}=\frac{\sqrt{2315}i}{98} t-\frac{25}{98}=-\frac{\sqrt{2315}i}{98}
Simplify.
t=\frac{25+\sqrt{2315}i}{98} t=\frac{-\sqrt{2315}i+25}{98}
Add \frac{25}{98} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}