Solve for t
t=\frac{10+i\times 40\sqrt{3}}{49}\approx 0.204081633+1.413919027i
t=\frac{-i\times 40\sqrt{3}+10}{49}\approx 0.204081633-1.413919027i
Share
Copied to clipboard
-4.9t^{2}+2t-10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-2±\sqrt{2^{2}-4\left(-4.9\right)\left(-10\right)}}{2\left(-4.9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4.9 for a, 2 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-2±\sqrt{4-4\left(-4.9\right)\left(-10\right)}}{2\left(-4.9\right)}
Square 2.
t=\frac{-2±\sqrt{4+19.6\left(-10\right)}}{2\left(-4.9\right)}
Multiply -4 times -4.9.
t=\frac{-2±\sqrt{4-196}}{2\left(-4.9\right)}
Multiply 19.6 times -10.
t=\frac{-2±\sqrt{-192}}{2\left(-4.9\right)}
Add 4 to -196.
t=\frac{-2±8\sqrt{3}i}{2\left(-4.9\right)}
Take the square root of -192.
t=\frac{-2±8\sqrt{3}i}{-9.8}
Multiply 2 times -4.9.
t=\frac{-2+8\sqrt{3}i}{-9.8}
Now solve the equation t=\frac{-2±8\sqrt{3}i}{-9.8} when ± is plus. Add -2 to 8i\sqrt{3}.
t=\frac{-40\sqrt{3}i+10}{49}
Divide -2+8i\sqrt{3} by -9.8 by multiplying -2+8i\sqrt{3} by the reciprocal of -9.8.
t=\frac{-8\sqrt{3}i-2}{-9.8}
Now solve the equation t=\frac{-2±8\sqrt{3}i}{-9.8} when ± is minus. Subtract 8i\sqrt{3} from -2.
t=\frac{10+40\sqrt{3}i}{49}
Divide -2-8i\sqrt{3} by -9.8 by multiplying -2-8i\sqrt{3} by the reciprocal of -9.8.
t=\frac{-40\sqrt{3}i+10}{49} t=\frac{10+40\sqrt{3}i}{49}
The equation is now solved.
-4.9t^{2}+2t-10=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-4.9t^{2}+2t-10-\left(-10\right)=-\left(-10\right)
Add 10 to both sides of the equation.
-4.9t^{2}+2t=-\left(-10\right)
Subtracting -10 from itself leaves 0.
-4.9t^{2}+2t=10
Subtract -10 from 0.
\frac{-4.9t^{2}+2t}{-4.9}=\frac{10}{-4.9}
Divide both sides of the equation by -4.9, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{2}{-4.9}t=\frac{10}{-4.9}
Dividing by -4.9 undoes the multiplication by -4.9.
t^{2}-\frac{20}{49}t=\frac{10}{-4.9}
Divide 2 by -4.9 by multiplying 2 by the reciprocal of -4.9.
t^{2}-\frac{20}{49}t=-\frac{100}{49}
Divide 10 by -4.9 by multiplying 10 by the reciprocal of -4.9.
t^{2}-\frac{20}{49}t+\left(-\frac{10}{49}\right)^{2}=-\frac{100}{49}+\left(-\frac{10}{49}\right)^{2}
Divide -\frac{20}{49}, the coefficient of the x term, by 2 to get -\frac{10}{49}. Then add the square of -\frac{10}{49} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{20}{49}t+\frac{100}{2401}=-\frac{100}{49}+\frac{100}{2401}
Square -\frac{10}{49} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{20}{49}t+\frac{100}{2401}=-\frac{4800}{2401}
Add -\frac{100}{49} to \frac{100}{2401} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{10}{49}\right)^{2}=-\frac{4800}{2401}
Factor t^{2}-\frac{20}{49}t+\frac{100}{2401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{10}{49}\right)^{2}}=\sqrt{-\frac{4800}{2401}}
Take the square root of both sides of the equation.
t-\frac{10}{49}=\frac{40\sqrt{3}i}{49} t-\frac{10}{49}=-\frac{40\sqrt{3}i}{49}
Simplify.
t=\frac{10+40\sqrt{3}i}{49} t=\frac{-40\sqrt{3}i+10}{49}
Add \frac{10}{49} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}