Solve for t
t=\frac{6\sqrt{6}}{7}+2\approx 4.099562637
t=-\frac{6\sqrt{6}}{7}+2\approx -0.099562637
Share
Copied to clipboard
-4.9t^{2}+19.6t+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-19.6±\sqrt{19.6^{2}-4\left(-4.9\right)\times 2}}{2\left(-4.9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4.9 for a, 19.6 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-19.6±\sqrt{384.16-4\left(-4.9\right)\times 2}}{2\left(-4.9\right)}
Square 19.6 by squaring both the numerator and the denominator of the fraction.
t=\frac{-19.6±\sqrt{384.16+19.6\times 2}}{2\left(-4.9\right)}
Multiply -4 times -4.9.
t=\frac{-19.6±\sqrt{384.16+39.2}}{2\left(-4.9\right)}
Multiply 19.6 times 2.
t=\frac{-19.6±\sqrt{423.36}}{2\left(-4.9\right)}
Add 384.16 to 39.2 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=\frac{-19.6±\frac{42\sqrt{6}}{5}}{2\left(-4.9\right)}
Take the square root of 423.36.
t=\frac{-19.6±\frac{42\sqrt{6}}{5}}{-9.8}
Multiply 2 times -4.9.
t=\frac{42\sqrt{6}-98}{-9.8\times 5}
Now solve the equation t=\frac{-19.6±\frac{42\sqrt{6}}{5}}{-9.8} when ± is plus. Add -19.6 to \frac{42\sqrt{6}}{5}.
t=-\frac{6\sqrt{6}}{7}+2
Divide \frac{-98+42\sqrt{6}}{5} by -9.8 by multiplying \frac{-98+42\sqrt{6}}{5} by the reciprocal of -9.8.
t=\frac{-42\sqrt{6}-98}{-9.8\times 5}
Now solve the equation t=\frac{-19.6±\frac{42\sqrt{6}}{5}}{-9.8} when ± is minus. Subtract \frac{42\sqrt{6}}{5} from -19.6.
t=\frac{6\sqrt{6}}{7}+2
Divide \frac{-98-42\sqrt{6}}{5} by -9.8 by multiplying \frac{-98-42\sqrt{6}}{5} by the reciprocal of -9.8.
t=-\frac{6\sqrt{6}}{7}+2 t=\frac{6\sqrt{6}}{7}+2
The equation is now solved.
-4.9t^{2}+19.6t+2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-4.9t^{2}+19.6t+2-2=-2
Subtract 2 from both sides of the equation.
-4.9t^{2}+19.6t=-2
Subtracting 2 from itself leaves 0.
\frac{-4.9t^{2}+19.6t}{-4.9}=-\frac{2}{-4.9}
Divide both sides of the equation by -4.9, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{19.6}{-4.9}t=-\frac{2}{-4.9}
Dividing by -4.9 undoes the multiplication by -4.9.
t^{2}-4t=-\frac{2}{-4.9}
Divide 19.6 by -4.9 by multiplying 19.6 by the reciprocal of -4.9.
t^{2}-4t=\frac{20}{49}
Divide -2 by -4.9 by multiplying -2 by the reciprocal of -4.9.
t^{2}-4t+\left(-2\right)^{2}=\frac{20}{49}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-4t+4=\frac{20}{49}+4
Square -2.
t^{2}-4t+4=\frac{216}{49}
Add \frac{20}{49} to 4.
\left(t-2\right)^{2}=\frac{216}{49}
Factor t^{2}-4t+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-2\right)^{2}}=\sqrt{\frac{216}{49}}
Take the square root of both sides of the equation.
t-2=\frac{6\sqrt{6}}{7} t-2=-\frac{6\sqrt{6}}{7}
Simplify.
t=\frac{6\sqrt{6}}{7}+2 t=-\frac{6\sqrt{6}}{7}+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}