Solve for t
t = \frac{2501}{245} = 10\frac{51}{245} \approx 10.208163265
t=10.2
Share
Copied to clipboard
-4.9t^{2}+100t-510.204=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-100±\sqrt{100^{2}-4\left(-4.9\right)\left(-510.204\right)}}{2\left(-4.9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4.9 for a, 100 for b, and -510.204 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-100±\sqrt{10000-4\left(-4.9\right)\left(-510.204\right)}}{2\left(-4.9\right)}
Square 100.
t=\frac{-100±\sqrt{10000+19.6\left(-510.204\right)}}{2\left(-4.9\right)}
Multiply -4 times -4.9.
t=\frac{-100±\sqrt{10000-9999.9984}}{2\left(-4.9\right)}
Multiply 19.6 times -510.204 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
t=\frac{-100±\sqrt{0.0016}}{2\left(-4.9\right)}
Add 10000 to -9999.9984.
t=\frac{-100±\frac{1}{25}}{2\left(-4.9\right)}
Take the square root of 0.0016.
t=\frac{-100±\frac{1}{25}}{-9.8}
Multiply 2 times -4.9.
t=-\frac{\frac{2499}{25}}{-9.8}
Now solve the equation t=\frac{-100±\frac{1}{25}}{-9.8} when ± is plus. Add -100 to \frac{1}{25}.
t=\frac{51}{5}
Divide -\frac{2499}{25} by -9.8 by multiplying -\frac{2499}{25} by the reciprocal of -9.8.
t=-\frac{\frac{2501}{25}}{-9.8}
Now solve the equation t=\frac{-100±\frac{1}{25}}{-9.8} when ± is minus. Subtract \frac{1}{25} from -100.
t=\frac{2501}{245}
Divide -\frac{2501}{25} by -9.8 by multiplying -\frac{2501}{25} by the reciprocal of -9.8.
t=\frac{51}{5} t=\frac{2501}{245}
The equation is now solved.
-4.9t^{2}+100t-510.204=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-4.9t^{2}+100t-510.204-\left(-510.204\right)=-\left(-510.204\right)
Add 510.204 to both sides of the equation.
-4.9t^{2}+100t=-\left(-510.204\right)
Subtracting -510.204 from itself leaves 0.
-4.9t^{2}+100t=510.204
Subtract -510.204 from 0.
\frac{-4.9t^{2}+100t}{-4.9}=\frac{510.204}{-4.9}
Divide both sides of the equation by -4.9, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{100}{-4.9}t=\frac{510.204}{-4.9}
Dividing by -4.9 undoes the multiplication by -4.9.
t^{2}-\frac{1000}{49}t=\frac{510.204}{-4.9}
Divide 100 by -4.9 by multiplying 100 by the reciprocal of -4.9.
t^{2}-\frac{1000}{49}t=-\frac{127551}{1225}
Divide 510.204 by -4.9 by multiplying 510.204 by the reciprocal of -4.9.
t^{2}-\frac{1000}{49}t+\left(-\frac{500}{49}\right)^{2}=-\frac{127551}{1225}+\left(-\frac{500}{49}\right)^{2}
Divide -\frac{1000}{49}, the coefficient of the x term, by 2 to get -\frac{500}{49}. Then add the square of -\frac{500}{49} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{1000}{49}t+\frac{250000}{2401}=-\frac{127551}{1225}+\frac{250000}{2401}
Square -\frac{500}{49} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{1000}{49}t+\frac{250000}{2401}=\frac{1}{60025}
Add -\frac{127551}{1225} to \frac{250000}{2401} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{500}{49}\right)^{2}=\frac{1}{60025}
Factor t^{2}-\frac{1000}{49}t+\frac{250000}{2401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{500}{49}\right)^{2}}=\sqrt{\frac{1}{60025}}
Take the square root of both sides of the equation.
t-\frac{500}{49}=\frac{1}{245} t-\frac{500}{49}=-\frac{1}{245}
Simplify.
t=\frac{2501}{245} t=\frac{51}{5}
Add \frac{500}{49} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}