Evaluate
3
Factor
3
Share
Copied to clipboard
-\frac{22}{5}-\frac{1}{3}+6+3-\frac{3\times 3+2}{3}+2.4
Convert decimal number -4.4 to fraction -\frac{44}{10}. Reduce the fraction -\frac{44}{10} to lowest terms by extracting and canceling out 2.
-\frac{66}{15}-\frac{5}{15}+6+3-\frac{3\times 3+2}{3}+2.4
Least common multiple of 5 and 3 is 15. Convert -\frac{22}{5} and \frac{1}{3} to fractions with denominator 15.
\frac{-66-5}{15}+6+3-\frac{3\times 3+2}{3}+2.4
Since -\frac{66}{15} and \frac{5}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{71}{15}+6+3-\frac{3\times 3+2}{3}+2.4
Subtract 5 from -66 to get -71.
-\frac{71}{15}+\frac{90}{15}+3-\frac{3\times 3+2}{3}+2.4
Convert 6 to fraction \frac{90}{15}.
\frac{-71+90}{15}+3-\frac{3\times 3+2}{3}+2.4
Since -\frac{71}{15} and \frac{90}{15} have the same denominator, add them by adding their numerators.
\frac{19}{15}+3-\frac{3\times 3+2}{3}+2.4
Add -71 and 90 to get 19.
\frac{19}{15}+\frac{45}{15}-\frac{3\times 3+2}{3}+2.4
Convert 3 to fraction \frac{45}{15}.
\frac{19+45}{15}-\frac{3\times 3+2}{3}+2.4
Since \frac{19}{15} and \frac{45}{15} have the same denominator, add them by adding their numerators.
\frac{64}{15}-\frac{3\times 3+2}{3}+2.4
Add 19 and 45 to get 64.
\frac{64}{15}-\frac{9+2}{3}+2.4
Multiply 3 and 3 to get 9.
\frac{64}{15}-\frac{11}{3}+2.4
Add 9 and 2 to get 11.
\frac{64}{15}-\frac{55}{15}+2.4
Least common multiple of 15 and 3 is 15. Convert \frac{64}{15} and \frac{11}{3} to fractions with denominator 15.
\frac{64-55}{15}+2.4
Since \frac{64}{15} and \frac{55}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{15}+2.4
Subtract 55 from 64 to get 9.
\frac{3}{5}+2.4
Reduce the fraction \frac{9}{15} to lowest terms by extracting and canceling out 3.
\frac{3}{5}+\frac{12}{5}
Convert decimal number 2.4 to fraction \frac{24}{10}. Reduce the fraction \frac{24}{10} to lowest terms by extracting and canceling out 2.
\frac{3+12}{5}
Since \frac{3}{5} and \frac{12}{5} have the same denominator, add them by adding their numerators.
\frac{15}{5}
Add 3 and 12 to get 15.
3
Divide 15 by 5 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}