Solve for y
y=\frac{17}{23}\approx 0.739130435
Graph
Share
Copied to clipboard
-4y-18y+18=3-\left(2-y\right)
Use the distributive property to multiply -6 by 3y-3.
-22y+18=3-\left(2-y\right)
Combine -4y and -18y to get -22y.
-22y+18=3-2-\left(-y\right)
To find the opposite of 2-y, find the opposite of each term.
-22y+18=3-2+y
The opposite of -y is y.
-22y+18=1+y
Subtract 2 from 3 to get 1.
-22y+18-y=1
Subtract y from both sides.
-23y+18=1
Combine -22y and -y to get -23y.
-23y=1-18
Subtract 18 from both sides.
-23y=-17
Subtract 18 from 1 to get -17.
y=\frac{-17}{-23}
Divide both sides by -23.
y=\frac{17}{23}
Fraction \frac{-17}{-23} can be simplified to \frac{17}{23} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}