Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(-y^{2}-y\right)
Factor out 4.
y\left(-y-1\right)
Consider -y^{2}-y. Factor out y.
4y\left(-y-1\right)
Rewrite the complete factored expression.
-4y^{2}-4y=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-4\right)±4}{2\left(-4\right)}
Take the square root of \left(-4\right)^{2}.
y=\frac{4±4}{2\left(-4\right)}
The opposite of -4 is 4.
y=\frac{4±4}{-8}
Multiply 2 times -4.
y=\frac{8}{-8}
Now solve the equation y=\frac{4±4}{-8} when ± is plus. Add 4 to 4.
y=-1
Divide 8 by -8.
y=\frac{0}{-8}
Now solve the equation y=\frac{4±4}{-8} when ± is minus. Subtract 4 from 4.
y=0
Divide 0 by -8.
-4y^{2}-4y=-4\left(y-\left(-1\right)\right)y
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1 for x_{1} and 0 for x_{2}.
-4y^{2}-4y=-4\left(y+1\right)y
Simplify all the expressions of the form p-\left(-q\right) to p+q.