Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-4x^{2}=16
Add 16 to both sides. Anything plus zero gives itself.
x^{2}=\frac{16}{-4}
Divide both sides by -4.
x^{2}=-4
Divide 16 by -4 to get -4.
x=2i x=-2i
The equation is now solved.
-4x^{2}-16=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-4\right)\left(-16\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 0 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-4\right)\left(-16\right)}}{2\left(-4\right)}
Square 0.
x=\frac{0±\sqrt{16\left(-16\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{0±\sqrt{-256}}{2\left(-4\right)}
Multiply 16 times -16.
x=\frac{0±16i}{2\left(-4\right)}
Take the square root of -256.
x=\frac{0±16i}{-8}
Multiply 2 times -4.
x=-2i
Now solve the equation x=\frac{0±16i}{-8} when ± is plus.
x=2i
Now solve the equation x=\frac{0±16i}{-8} when ± is minus.
x=-2i x=2i
The equation is now solved.