Solve for x (complex solution)
x=-\frac{1}{4}i=-0.25i
x=\frac{1}{4}i=0.25i
Graph
Share
Copied to clipboard
x^{2}=\frac{\frac{1}{4}}{-4}
Divide both sides by -4.
x^{2}=\frac{1}{4\left(-4\right)}
Express \frac{\frac{1}{4}}{-4} as a single fraction.
x^{2}=\frac{1}{-16}
Multiply 4 and -4 to get -16.
x^{2}=-\frac{1}{16}
Fraction \frac{1}{-16} can be rewritten as -\frac{1}{16} by extracting the negative sign.
x=\frac{1}{4}i x=-\frac{1}{4}i
The equation is now solved.
x^{2}=\frac{\frac{1}{4}}{-4}
Divide both sides by -4.
x^{2}=\frac{1}{4\left(-4\right)}
Express \frac{\frac{1}{4}}{-4} as a single fraction.
x^{2}=\frac{1}{-16}
Multiply 4 and -4 to get -16.
x^{2}=-\frac{1}{16}
Fraction \frac{1}{-16} can be rewritten as -\frac{1}{16} by extracting the negative sign.
x^{2}+\frac{1}{16}=0
Add \frac{1}{16} to both sides.
x=\frac{0±\sqrt{0^{2}-4\times \frac{1}{16}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and \frac{1}{16} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{1}{16}}}{2}
Square 0.
x=\frac{0±\sqrt{-\frac{1}{4}}}{2}
Multiply -4 times \frac{1}{16}.
x=\frac{0±\frac{1}{2}i}{2}
Take the square root of -\frac{1}{4}.
x=\frac{1}{4}i
Now solve the equation x=\frac{0±\frac{1}{2}i}{2} when ± is plus.
x=-\frac{1}{4}i
Now solve the equation x=\frac{0±\frac{1}{2}i}{2} when ± is minus.
x=\frac{1}{4}i x=-\frac{1}{4}i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}