Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(-7x^{2}+7x+8)
Combine -4x^{2} and -3x^{2} to get -7x^{2}.
-7x^{2}+7x+8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\left(-7\right)\times 8}}{2\left(-7\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{49-4\left(-7\right)\times 8}}{2\left(-7\right)}
Square 7.
x=\frac{-7±\sqrt{49+28\times 8}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-7±\sqrt{49+224}}{2\left(-7\right)}
Multiply 28 times 8.
x=\frac{-7±\sqrt{273}}{2\left(-7\right)}
Add 49 to 224.
x=\frac{-7±\sqrt{273}}{-14}
Multiply 2 times -7.
x=\frac{\sqrt{273}-7}{-14}
Now solve the equation x=\frac{-7±\sqrt{273}}{-14} when ± is plus. Add -7 to \sqrt{273}.
x=-\frac{\sqrt{273}}{14}+\frac{1}{2}
Divide -7+\sqrt{273} by -14.
x=\frac{-\sqrt{273}-7}{-14}
Now solve the equation x=\frac{-7±\sqrt{273}}{-14} when ± is minus. Subtract \sqrt{273} from -7.
x=\frac{\sqrt{273}}{14}+\frac{1}{2}
Divide -7-\sqrt{273} by -14.
-7x^{2}+7x+8=-7\left(x-\left(-\frac{\sqrt{273}}{14}+\frac{1}{2}\right)\right)\left(x-\left(\frac{\sqrt{273}}{14}+\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{2}-\frac{\sqrt{273}}{14} for x_{1} and \frac{1}{2}+\frac{\sqrt{273}}{14} for x_{2}.
-7x^{2}+7x+8
Combine -4x^{2} and -3x^{2} to get -7x^{2}.