Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=5 ab=-4\left(-1\right)=4
Factor the expression by grouping. First, the expression needs to be rewritten as -4x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
1,4 2,2
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 4.
1+4=5 2+2=4
Calculate the sum for each pair.
a=4 b=1
The solution is the pair that gives sum 5.
\left(-4x^{2}+4x\right)+\left(x-1\right)
Rewrite -4x^{2}+5x-1 as \left(-4x^{2}+4x\right)+\left(x-1\right).
4x\left(-x+1\right)-\left(-x+1\right)
Factor out 4x in the first and -1 in the second group.
\left(-x+1\right)\left(4x-1\right)
Factor out common term -x+1 by using distributive property.
-4x^{2}+5x-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\left(-4\right)\left(-1\right)}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{25-4\left(-4\right)\left(-1\right)}}{2\left(-4\right)}
Square 5.
x=\frac{-5±\sqrt{25+16\left(-1\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-5±\sqrt{25-16}}{2\left(-4\right)}
Multiply 16 times -1.
x=\frac{-5±\sqrt{9}}{2\left(-4\right)}
Add 25 to -16.
x=\frac{-5±3}{2\left(-4\right)}
Take the square root of 9.
x=\frac{-5±3}{-8}
Multiply 2 times -4.
x=-\frac{2}{-8}
Now solve the equation x=\frac{-5±3}{-8} when ± is plus. Add -5 to 3.
x=\frac{1}{4}
Reduce the fraction \frac{-2}{-8} to lowest terms by extracting and canceling out 2.
x=-\frac{8}{-8}
Now solve the equation x=\frac{-5±3}{-8} when ± is minus. Subtract 3 from -5.
x=1
Divide -8 by -8.
-4x^{2}+5x-1=-4\left(x-\frac{1}{4}\right)\left(x-1\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{4} for x_{1} and 1 for x_{2}.
-4x^{2}+5x-1=-4\times \frac{-4x+1}{-4}\left(x-1\right)
Subtract \frac{1}{4} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-4x^{2}+5x-1=\left(-4x+1\right)\left(x-1\right)
Cancel out 4, the greatest common factor in -4 and 4.
x ^ 2 -\frac{5}{4}x +\frac{1}{4} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{5}{4} rs = \frac{1}{4}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{5}{8} - u s = \frac{5}{8} + u
Two numbers r and s sum up to \frac{5}{4} exactly when the average of the two numbers is \frac{1}{2}*\frac{5}{4} = \frac{5}{8}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{5}{8} - u) (\frac{5}{8} + u) = \frac{1}{4}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{1}{4}
\frac{25}{64} - u^2 = \frac{1}{4}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{1}{4}-\frac{25}{64} = -\frac{9}{64}
Simplify the expression by subtracting \frac{25}{64} on both sides
u^2 = \frac{9}{64} u = \pm\sqrt{\frac{9}{64}} = \pm \frac{3}{8}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{5}{8} - \frac{3}{8} = 0.250 s = \frac{5}{8} + \frac{3}{8} = 1
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.