Solve for x
x=3
x = \frac{7}{4} = 1\frac{3}{4} = 1.75
Graph
Share
Copied to clipboard
-4x^{2}+19x-21=0
Subtract 21 from both sides.
a+b=19 ab=-4\left(-21\right)=84
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -4x^{2}+ax+bx-21. To find a and b, set up a system to be solved.
1,84 2,42 3,28 4,21 6,14 7,12
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 84.
1+84=85 2+42=44 3+28=31 4+21=25 6+14=20 7+12=19
Calculate the sum for each pair.
a=12 b=7
The solution is the pair that gives sum 19.
\left(-4x^{2}+12x\right)+\left(7x-21\right)
Rewrite -4x^{2}+19x-21 as \left(-4x^{2}+12x\right)+\left(7x-21\right).
4x\left(-x+3\right)-7\left(-x+3\right)
Factor out 4x in the first and -7 in the second group.
\left(-x+3\right)\left(4x-7\right)
Factor out common term -x+3 by using distributive property.
x=3 x=\frac{7}{4}
To find equation solutions, solve -x+3=0 and 4x-7=0.
-4x^{2}+19x=21
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-4x^{2}+19x-21=21-21
Subtract 21 from both sides of the equation.
-4x^{2}+19x-21=0
Subtracting 21 from itself leaves 0.
x=\frac{-19±\sqrt{19^{2}-4\left(-4\right)\left(-21\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 19 for b, and -21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-19±\sqrt{361-4\left(-4\right)\left(-21\right)}}{2\left(-4\right)}
Square 19.
x=\frac{-19±\sqrt{361+16\left(-21\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-19±\sqrt{361-336}}{2\left(-4\right)}
Multiply 16 times -21.
x=\frac{-19±\sqrt{25}}{2\left(-4\right)}
Add 361 to -336.
x=\frac{-19±5}{2\left(-4\right)}
Take the square root of 25.
x=\frac{-19±5}{-8}
Multiply 2 times -4.
x=-\frac{14}{-8}
Now solve the equation x=\frac{-19±5}{-8} when ± is plus. Add -19 to 5.
x=\frac{7}{4}
Reduce the fraction \frac{-14}{-8} to lowest terms by extracting and canceling out 2.
x=-\frac{24}{-8}
Now solve the equation x=\frac{-19±5}{-8} when ± is minus. Subtract 5 from -19.
x=3
Divide -24 by -8.
x=\frac{7}{4} x=3
The equation is now solved.
-4x^{2}+19x=21
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+19x}{-4}=\frac{21}{-4}
Divide both sides by -4.
x^{2}+\frac{19}{-4}x=\frac{21}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{19}{4}x=\frac{21}{-4}
Divide 19 by -4.
x^{2}-\frac{19}{4}x=-\frac{21}{4}
Divide 21 by -4.
x^{2}-\frac{19}{4}x+\left(-\frac{19}{8}\right)^{2}=-\frac{21}{4}+\left(-\frac{19}{8}\right)^{2}
Divide -\frac{19}{4}, the coefficient of the x term, by 2 to get -\frac{19}{8}. Then add the square of -\frac{19}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{19}{4}x+\frac{361}{64}=-\frac{21}{4}+\frac{361}{64}
Square -\frac{19}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{19}{4}x+\frac{361}{64}=\frac{25}{64}
Add -\frac{21}{4} to \frac{361}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{19}{8}\right)^{2}=\frac{25}{64}
Factor x^{2}-\frac{19}{4}x+\frac{361}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{8}\right)^{2}}=\sqrt{\frac{25}{64}}
Take the square root of both sides of the equation.
x-\frac{19}{8}=\frac{5}{8} x-\frac{19}{8}=-\frac{5}{8}
Simplify.
x=3 x=\frac{7}{4}
Add \frac{19}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}