Solve for x
x<-\frac{1}{40}
Graph
Share
Copied to clipboard
-4x+\frac{2}{5}>\frac{1}{2}
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
-4x>\frac{1}{2}-\frac{2}{5}
Subtract \frac{2}{5} from both sides.
-4x>\frac{5}{10}-\frac{4}{10}
Least common multiple of 2 and 5 is 10. Convert \frac{1}{2} and \frac{2}{5} to fractions with denominator 10.
-4x>\frac{5-4}{10}
Since \frac{5}{10} and \frac{4}{10} have the same denominator, subtract them by subtracting their numerators.
-4x>\frac{1}{10}
Subtract 4 from 5 to get 1.
x<\frac{\frac{1}{10}}{-4}
Divide both sides by -4. Since -4 is negative, the inequality direction is changed.
x<\frac{1}{10\left(-4\right)}
Express \frac{\frac{1}{10}}{-4} as a single fraction.
x<\frac{1}{-40}
Multiply 10 and -4 to get -40.
x<-\frac{1}{40}
Fraction \frac{1}{-40} can be rewritten as -\frac{1}{40} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}