Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

-4r^{2}-4r=6
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-4r^{2}-4r-6=6-6
Subtract 6 from both sides of the equation.
-4r^{2}-4r-6=0
Subtracting 6 from itself leaves 0.
r=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-4\right)\left(-6\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -4 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-4\right)±\sqrt{16-4\left(-4\right)\left(-6\right)}}{2\left(-4\right)}
Square -4.
r=\frac{-\left(-4\right)±\sqrt{16+16\left(-6\right)}}{2\left(-4\right)}
Multiply -4 times -4.
r=\frac{-\left(-4\right)±\sqrt{16-96}}{2\left(-4\right)}
Multiply 16 times -6.
r=\frac{-\left(-4\right)±\sqrt{-80}}{2\left(-4\right)}
Add 16 to -96.
r=\frac{-\left(-4\right)±4\sqrt{5}i}{2\left(-4\right)}
Take the square root of -80.
r=\frac{4±4\sqrt{5}i}{2\left(-4\right)}
The opposite of -4 is 4.
r=\frac{4±4\sqrt{5}i}{-8}
Multiply 2 times -4.
r=\frac{4+4\sqrt{5}i}{-8}
Now solve the equation r=\frac{4±4\sqrt{5}i}{-8} when ± is plus. Add 4 to 4i\sqrt{5}.
r=\frac{-\sqrt{5}i-1}{2}
Divide 4+4i\sqrt{5} by -8.
r=\frac{-4\sqrt{5}i+4}{-8}
Now solve the equation r=\frac{4±4\sqrt{5}i}{-8} when ± is minus. Subtract 4i\sqrt{5} from 4.
r=\frac{-1+\sqrt{5}i}{2}
Divide 4-4i\sqrt{5} by -8.
r=\frac{-\sqrt{5}i-1}{2} r=\frac{-1+\sqrt{5}i}{2}
The equation is now solved.
-4r^{2}-4r=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4r^{2}-4r}{-4}=\frac{6}{-4}
Divide both sides by -4.
r^{2}+\left(-\frac{4}{-4}\right)r=\frac{6}{-4}
Dividing by -4 undoes the multiplication by -4.
r^{2}+r=\frac{6}{-4}
Divide -4 by -4.
r^{2}+r=-\frac{3}{2}
Reduce the fraction \frac{6}{-4} to lowest terms by extracting and canceling out 2.
r^{2}+r+\left(\frac{1}{2}\right)^{2}=-\frac{3}{2}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}+r+\frac{1}{4}=-\frac{3}{2}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
r^{2}+r+\frac{1}{4}=-\frac{5}{4}
Add -\frac{3}{2} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(r+\frac{1}{2}\right)^{2}=-\frac{5}{4}
Factor r^{2}+r+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{5}{4}}
Take the square root of both sides of the equation.
r+\frac{1}{2}=\frac{\sqrt{5}i}{2} r+\frac{1}{2}=-\frac{\sqrt{5}i}{2}
Simplify.
r=\frac{-1+\sqrt{5}i}{2} r=\frac{-\sqrt{5}i-1}{2}
Subtract \frac{1}{2} from both sides of the equation.