Evaluate
\left(1-2q\right)\left(2q+13\right)
Factor
\left(1-2q\right)\left(2q+13\right)
Share
Copied to clipboard
-4q^{2}-24q+12+1
Combine -22q and -2q to get -24q.
-4q^{2}-24q+13
Add 12 and 1 to get 13.
-4q^{2}-24q+13
Multiply and combine like terms.
a+b=-24 ab=-4\times 13=-52
Factor the expression by grouping. First, the expression needs to be rewritten as -4q^{2}+aq+bq+13. To find a and b, set up a system to be solved.
1,-52 2,-26 4,-13
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -52.
1-52=-51 2-26=-24 4-13=-9
Calculate the sum for each pair.
a=2 b=-26
The solution is the pair that gives sum -24.
\left(-4q^{2}+2q\right)+\left(-26q+13\right)
Rewrite -4q^{2}-24q+13 as \left(-4q^{2}+2q\right)+\left(-26q+13\right).
2q\left(-2q+1\right)+13\left(-2q+1\right)
Factor out 2q in the first and 13 in the second group.
\left(-2q+1\right)\left(2q+13\right)
Factor out common term -2q+1 by using distributive property.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}