Evaluate
-5+6i
Real Part
-5
Quiz
Complex Number
5 problems similar to:
- 4 i ^ { 9 } - 2 i ^ { 79 } - 5 i ^ { 112 } + 8 i ^ { 45 }
Share
Copied to clipboard
-4i-2i^{79}-5i^{112}+8i^{45}
Calculate i to the power of 9 and get i.
-4i-2\left(-i\right)-5i^{112}+8i^{45}
Calculate i to the power of 79 and get -i.
-4i-\left(-2i\right)-5i^{112}+8i^{45}
Multiply 2 and -i to get -2i.
-4i+2i-5i^{112}+8i^{45}
The opposite of -2i is 2i.
-2i-5i^{112}+8i^{45}
Add -4i and 2i to get -2i.
-2i-5\times 1+8i^{45}
Calculate i to the power of 112 and get 1.
-2i-5+8i^{45}
Multiply 5 and 1 to get 5.
-2i-5+8i
Calculate i to the power of 45 and get i.
-5+6i
Do the additions.
Re(-4i-2i^{79}-5i^{112}+8i^{45})
Calculate i to the power of 9 and get i.
Re(-4i-2\left(-i\right)-5i^{112}+8i^{45})
Calculate i to the power of 79 and get -i.
Re(-4i-\left(-2i\right)-5i^{112}+8i^{45})
Multiply 2 and -i to get -2i.
Re(-4i+2i-5i^{112}+8i^{45})
The opposite of -2i is 2i.
Re(-2i-5i^{112}+8i^{45})
Add -4i and 2i to get -2i.
Re(-2i-5\times 1+8i^{45})
Calculate i to the power of 112 and get 1.
Re(-2i-5+8i^{45})
Multiply 5 and 1 to get 5.
Re(-2i-5+8i)
Calculate i to the power of 45 and get i.
Re(-5+6i)
Do the additions in -2i-5+8i.
-5
The real part of -5+6i is -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}