Solve for b
b<\frac{5}{2}
Share
Copied to clipboard
-16b-4\left(\frac{3}{4}-5b+\frac{1\times 4+1}{4}\right)<2
Multiply both sides of the equation by 4, the least common multiple of 4,2. Since 4 is positive, the inequality direction remains the same.
-16b-4\left(\frac{3}{4}-5b+\frac{4+1}{4}\right)<2
Multiply 1 and 4 to get 4.
-16b-4\left(\frac{3}{4}-5b+\frac{5}{4}\right)<2
Add 4 and 1 to get 5.
-16b-4\left(\frac{3+5}{4}-5b\right)<2
Since \frac{3}{4} and \frac{5}{4} have the same denominator, add them by adding their numerators.
-16b-4\left(\frac{8}{4}-5b\right)<2
Add 3 and 5 to get 8.
-16b-4\left(2-5b\right)<2
Divide 8 by 4 to get 2.
-16b-8+20b<2
Use the distributive property to multiply -4 by 2-5b.
4b-8<2
Combine -16b and 20b to get 4b.
4b<2+8
Add 8 to both sides.
4b<10
Add 2 and 8 to get 10.
b<\frac{10}{4}
Divide both sides by 4. Since 4 is positive, the inequality direction remains the same.
b<\frac{5}{2}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}