Solve for a
a<-1
Share
Copied to clipboard
-4a+1>9+6a+3+a
Use the distributive property to multiply 3 by 2a+1.
-4a+1>12+6a+a
Add 9 and 3 to get 12.
-4a+1>12+7a
Combine 6a and a to get 7a.
-4a+1-7a>12
Subtract 7a from both sides.
-11a+1>12
Combine -4a and -7a to get -11a.
-11a>12-1
Subtract 1 from both sides.
-11a>11
Subtract 1 from 12 to get 11.
a<\frac{11}{-11}
Divide both sides by -11. Since -11 is negative, the inequality direction is changed.
a<-1
Divide 11 by -11 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}